
Reflecting Demand in Programming Logics:
a case study for Haskell

William L. Harrison Richard B. Kieburtz

Pacific Software Research Center
OGI School of Science & Engineering
Oregon Health & Science University

{wlh,dick}@cse.ogi.edu

Abstract. Haskell is a functional programming language whose evaluation is lazy by default.
However, Haskell also provides pattern matching facilities which add a modicum of eagerness
to its otherwise lazy default evaluation. This mixed or “non-strict” semantics can be quite
difficult to reason with. This paper introduces a programming logic, P-logic, which neatly
formalizes the mixed evaluation in Haskell pattern-matching as a logic, thereby simplifying
the task of specifying and verifying Haskell programs. In P-logic, aspects of demand are
reflected or represented within both the predicate language and its model theory, allowing
for expressive and comprehensible program verification.

1 Introduction

Haskell is frequently referred to as a “lazy” functional language, but it is more properly under-
stood as non-eager language because Haskell contains many constructs which perturb its default
lazy evaluation. Among these perturbing features are pattern-matching, datatype strictness anno-
tations, and irrefutable pattern annotations, and their combination in Haskell yields some of the
most sophisticated pattern-matching facilities around. The interaction between Haskell’s default
lazy evaluation and its pattern-matching is surprisingly complicated[9] and has given rise to the
slogan: Haskell has fine control of demand.

This paper introduces an axiomatic semantics for Haskell, called P-logic1, which neatly charac-
terizes Haskell’s fine control of demand in a logic. P-logic is based upon the familiar Gentzen-style
sequent calculus [4]. Predicates in P-logic have two interpretations—weak and strong—that are
used to mimic lazy and eager demand in some sense. Within the predicate language itself, predi-
cates may be explicitly strengthened to coerce a predicate’s interpretation to be strong. Verification
conditions for predicates—called pattern predicates—are calculated directly from each pattern, and
these verification condition generators2 are used throughout the inference rules presented here. The
verification condition generators are the mechanism by which demand in Haskell is reflected within
P-logic.

The rest of this paper proceeds as follows. First, Section 2 gives an overview of the Haskell
sublanguage we consider in this paper. This sublanguage contains the Haskell constructs most
directly affected by its pattern-matching. Section 3 presents an overview of the formal semantics
of this fragment. Although this semantics has been presented elsewhere[9], we include a summary
here to make the paper more self-contained and also because this semantics influenced the design
of P-logic. Finally in Section 4, we present the fragment of P-logic which deals with Haskell’s fine
control of demand.
1 The name P-logic is short for Programatica logic, as the logic has been developed as part of the Progra-

matica project [15] at OGI.
2 Written in Haskell and available by request from the authors.

2 A Haskell fragment and its informal semantics

This section gives an overview of the fragment of Haskell we consider in this paper. The Haskell
sublanguage (expressed as the Haskell datatype E in Figure 1) is representative of the Haskell
constructs dependent on pattern-matching. First in Section 2.1,we give an informal overview of
the meaning of these constructs, and then in Section 2.2, we show how Haskell’s fine control of
demand leads to unexpected complexity in Haskell evaluation.

type Name = String
data LS = Lazy | Strict deriving Eq
data P = Pvar Name | Pcondata Name [P] | Ptilde P | Pwildcard {- Patterns -}
data E = Var Name | Undefined | ConApp (Name,[LS]) [E] | Case E [(P,E)] {- Expressions -}

Fig. 1. Abstract Syntax of a Haskell Fragment

2.1 Patterned abstractions

Patterns may occur in several different syntactic contexts in Haskell—in case branches, explicit
abstractions, or on the left-hand sides of definitions. We say that a pattern is abstracted if it occurs
in an operand position on the left-hand side of a function definition3, under a lambda-symbol (the
backslash, in Haskell) or to the left of the arrow symbol (->) in a case branch. Since the roles
played by abstracted patterns are similar in every context, we shall focus on patterns in case
expressions.

Evaluating case expressions When a case expression is evaluated, the first case branch is
applied to the case discriminator (the expression between the keywords case. . . of). If the case
discriminator matches the abstracted pattern of the branch, then the body of the case branch is
evaluated in a context extended with the value bindings of pattern variables made by the match.
If the discriminator fails to match the pattern, then the next in the list of case branches is applied
to the discriminator. If no branch matches, then evaluation of the case expression fails with an
unrecoverable error.

Matching abstracted patterns An abstracted pattern fulfills two roles:

– Control: A case discriminator expression is evaluated to the extent necessary to determine
whether it matches the pattern of a case branch. If the match fails, control shifts to try a match
with the next alternative branch, if one is available.

– Binding: When a match succeeds, each variable occurring in the pattern is bound to a subterm
corresponding in position in the (partly evaluated) case discriminator. Since patterns in Haskell
cannot contain repeated occurrences of a variable, the bindings are unique at any successful
match.

3 In a local definition, a pattern may occur as the entire left-hand side of an equation. Such an occurrence
is implicitly control-disabled, even if it is not prefixed by the character (∼).

Variables and wildcard patterns A variable is itself a pattern which matches any term4. Thus a
match with a variable never fails and always accomplishes a binding. A term need not be evaluated
to match with a pattern variable.

Haskell designates a so-called wildcard pattern by the underscore character (). The wildcard
pattern, like a variable, never fails to match but it entails no binding.

Constructor patterns: strict and lazy When a data constructor occurs in a pattern, it must
appear in a saturated application to sub-patterns. That is, a constructor typed as a k-ary function
in a datatype declaration must be applied to exactly k sub-patterns when it is used in a pattern.

When a constructor occurs as the top-level operator in a pattern, a match can occur only if
the case discriminator evaluates to a term that has the same constructor as its primary opera-
tor. Subterms of the discriminator must match the corresponding sub-patterns of the constructor
pattern or else the entire match fails. If a sub-pattern happens to be a variable or a wildcard, no
further evaluation of the corresponding sub-term of the matching expression is required.

However, a constructor may be declared (in a datatype declaration) to be strict in one or more
of its argument positions by prefixing the character (!) to the type expressions in these argument
positions. When a constructor is strict its ith argument position, a constructor application will
evaluate its ith argument. Thus a pattern match involving a constructor declared to be strict in
one or more argument positions implicitly forces evaluation of the corresponding subexpressions
of the matching term.

Control-disabled patterns Disabling a pattern for control with (∼) does not disable the binding
function of a match, it merely defers binding until further computation demands a value for one
of the variables occurring in the pattern. When that happens, the focus of computation returns
to the deferred pattern match, which is fully computed in order to bind the variables introduced
in the pattern. Should a deferred pattern match fail, no alternative is tried, as might have been
the case in a normal match failure. Failure of a deferred pattern match causes an unrecoverable
program error.

2.2 An example of Haskell’s “Fine Control of Demand”

In the evaluation of (case e {p1 -> e1; . . . ; pn -> en}), patterns pi are matched against e in left-to-right
order until a successful match ps is found. Then, the value of the whole expression is the value of
the expression es. If no such match is found, then the value of the whole expression is undefined.
For example, consider the following case expressions in Table 1:

data Tree = T Tree Tree | S Tree | L | R
case T L R of {T (S x) y -> y; T x y -> x} ---> L
case T L R of {T ~(S x) y -> y; T x y -> x} ---> R
case T L R of {T ~(S x) y -> x; T x y -> y} ---> program error (match)
case T L R of {~(T (S x) y) -> y; T x y -> x} ---> program error (match)

Table 1. “Fine control of demand” in Haskell complicates evaluation

In the first of the case expressions above, the constructor L fails to match the embedded pattern
(S x) in the first case branch. The match failure shifts control to the second case branch. In the
second example, the embedded pattern ∼(S x) is control-disabled. The term (T L R) thus matches
4 As Haskell is strongly typed, a variable can only be compared with terms of the same type.

-- Semantic Functions for E and P -- Environments -- Domain of Values
mE :: E -> Env -> V type Name = String data V = FV (V -> V) | {- functions -}
mP :: P -> V -> Maybe [V] type Env = Name -> V Tagged Name [V] {- structured data -}

-- Function composition (diagrammatic) -- Kleisli composition (diagrammatic)
(>>>) :: (a -> b) -> (b -> c) -> a -> c (<>) :: (a->Maybe b)->(b->Maybe c)-> a->Maybe c
f >>> g = g . f f <> g = \ x -> f x >>= g

-- Domains are pointed -- Purification: the "run" of Maybe monad
bottom :: a purify :: Maybe a -> a
bottom = undefined purify (Just x) = x

purify Nothing = bottom

-- Alternation -- Semantic "seq"
fatbar :: (a->Maybe b) -> (a->Maybe b) -> (a->Maybe b) semseq :: V -> V -> V
f ‘fatbar‘ g = \ x -> (f x) ‘fb‘ (g x) semseq x y = case x of

where fb :: Maybe a -> Maybe a -> Maybe a (FV _) -> y ;
Nothing ‘fb‘ y = y (Tagged _ _) -> y

(Just v) ‘fb‘ y = (Just v)

Fig. 2. Semantic Operators

the pattern (T ∼(S x) y) binding R to the variable y. In the third example, the body of the first case
branch demands a value for x, thereby forcing a deferred match of the subterm L with the pattern
∼(S x). The deferred match fails, resulting in a program error. The fourth example illustrates that
a deferred match of the term (T L R) against the pattern (T (S x) y) fails, although the match
was evaluated in response to a request for a binding for y alone.

3 Formal Semantics of the Haskell Fragment

This section outlines the formal semantics of the Haskell fragment considered in this paper. This
semantics has been described in detail elsewhere [9], and so the presentation here will be brief. The
semantics is presented as a metacircular interpreter for the Haskell fragment whose abstract syntax
is given in Figure 1. The interpreter, written in Haskell itself, makes use of standard techniques
and structures from the denotational description of programming languages and uses monads to
model pattern-matching.

Although the semantic metalanguage here is Haskell, care has been taken to use notation which
will be recognizable by any functional programmer. However unlike many functional languages,
Haskell has explicit monads, and so we give an overview here of Haskell’s monad syntax5. The
semantics relies on an error monad [18], which is modeled in Haskell by the Maybe monad. The
structure of the Maybe monad, its unit (return) and its bind (>>=)6 are given as:

data Maybe a = Just a | Nothing (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
return :: a -> Maybe a (Nothing >>= f) = Nothing
return = Just (Just x >>= f) = f x

do { y <- x ; f } = (x >>= (\y->f))

Lastly, we need the concept of the fringe of a pattern, the variables that have defining occur-
rences in the pattern, listed from left to right.

Definition 1 (Fringe of a pattern) The fringe of a pattern p is the list of (distinct) variables
occurring in p in left-to-right order. Its definition is given by induction on the abstract syntax of
patterns by the Haskell function fringe in Figure 3.

5 We assume the reader has some familiarity with monads [18].
6 Haskell has an alternative syntax for bind (>>=) called “do notation” which is defined above.

mP :: P -> V -> Maybe [V]
mP (Pvar x) v = Just [v]
mP (Pcondata n ps) (Tagged t vs) = if n==t then (stuple (map mP ps) vs) else Nothing
mP Pwildcard v = Just []
mP (Ptilde p) v = Just(case mP p v of { Nothing -> replicate lp bottom ; Just z -> z })

where lp = length (fringe p)
replicate 0 x = []
replicate n x = x : (replicate (n-1) x)

fringe :: P -> [Name] --- the fringe of a pattern
fringe (Pvar n) = [n] fringe Pwildcard = []
fringe (Ptilde p) = fringe p fringe (Pcondata _ ps) = concat (map fringe ps)

stuple :: [V -> Maybe [V]] -> [V] -> Maybe [V]
stuple [] [] = Just []
stuple (q:qs) (v:vs) = do { v’ <- q v ; vs’ <- stuple qs vs ; Just (v’++vs’) }

Fig. 3. Semantics of a Haskell Fragment: Patterns

Figure 2 contains a description of the semantic setting for the Haskell fragment considered in
this paper. It is in most respects a conventional denotational semantics for a functional language.
The dynamic semantics for expressions, mE, maps an expression and an environment to a value in
the domain of values V. This domain V is itself structured conventionally as a universal domain
construction [8] over the sum of functions and structured data. The semantics of patterns, mP, takes
a pattern and returns a map of type (V->Maybe [V]) (more will be said about this type below). We
use two composition operators, both written as infix operators in diagrammatic order. The symbol
(>>>) denotes function composition and the symbol (<>) denotes Kleisli composition in the Maybe
monad. It is assumed that the domain is pointed in every type; that is, every domain contains a
bottom element bottom (usually written ⊥), which is modeled here by the polymorphic Haskell
constant undefined.

Figure 2 also displays two combinators integral to modeling case expressions and patterns,
called fatbar and purify. If m1 and m2 have type (V->Maybe V), then ((fatbar m1 m2) v) ex-
hibits sequencing behavior similar to (case v of { m1 ; m2 }). The purify operator converts a
Maybe-computation into a value, sending a Nothing to bottom. Post-composing with purify signifies
that expressions whose evaluation produces certain pattern-match failures (e.g., exhaustion of the
branches of a case expression) ultimately denote bottom.

Figures 3 and 4 display the semantics for patterns and expressions, mP and mE, respectively. For
a full description of these semantics, please refer to [9]. Generally, the effect of deferring pattern
match failure is characterized by the following equivalence:

(mP (∼p) v) is Just[bottom,. . .,bottom]⇔ (mP p v) is Nothing

Even when (mP p v) fails (i.e., is Nothing), (mP (∼p) v) still succeeds, but all of the bindings created
thereby are bottom.

4 Logic for the Haskell Fragment

While the dynamic semantics defines a meaning for expressions by providing an abstract evaluation
model, a verification logic expresses static assertions about properties of the semantics. An assertion
can take the form of a k-ary predicate applied to k terms. For simplicity, we restrict ourselves here
to unary predicates (k = 1).

We write t ::: P for the assertion that term t satisfies predicate P . Because function and data
constructor applications are non-strict in Haskell’s evaluation semantics, two notions of satisfaction
of a predicate are sensible.

mE :: E -> Env -> V
mE (Var n) rho = rho n
mE (Case e ml) rho = mcase rho ml (mE e rho)
mE (ConApp (n,ls) es) rho = evalL (zip es ls) rho n []

where evalL :: [(E,LS)] -> Env -> Name -> [V] -> V
evalL [] rho n vs = Tagged n vs
evalL ((e,Strict):es) rho n vs = semseq (mE e rho)

(evalL es rho n (vs ++ [mE e rho]))
evalL ((e,Lazy):es) rho n vs = evalL es rho n (vs ++ [mE e rho])

mE Undefined rho = bottom

match :: Env -> (P,E) -> V -> Maybe V
match rho (p,e) = mP p <> ((\vs -> mE e (extend rho xs vs)) >>> Just)

where xs = fringe p

mcase :: Env -> [(P,E)] -> V -> V
mcase rho ml = (fatbarL (map (match rho) ml)) >>> purify

where fatbarL :: [V -> Maybe V] -> V -> Maybe V
fatbarL ms = foldr fatbar (\ _ -> (Just bottom)) ms

Fig. 4. Semantics of a Haskell Fragment: Expressions

Definition 2 (Weak/Strong Predicate Satisfaction) We say that a predicate, P , is weakly
satisfied by an expression t of type τ if t’s denotation belongs to the set specified by P . It is strongly
satisfied if, in addition, the denotation of t is not the bottom element in the domain corresponding to
the type τ . By convention, a predicate assumes its weak interpretation unless otherwise annotated.
An otherwise weak predicate may be explicitly strengthened by prefixing the symbol ($).

In this section we give a brief introduction to the syntax of P-logic, as well as some inference
rules that are relevant to pattern-matching in Haskell.

4.1 Predicates in P-logic

Atomic, unary predicates include the predicate constants, Univ and UnDef, which are respectively
satisfied by all terms and by only those terms whose values are undefined.

There are two principal ways that compound predicates are formed in P-logic.

1. The constructors of datatypes declared in a Haskell program are implicitly “lifted” to act as
predicate constructors in P-logic. For example, in the context of a program, the list constructor
(:) combines an expression h of type a and an expression t of type [a] into a new expression
(h : t) of type [a]. In the context of a formula, the same constructor combines a predicate
P and a predicate Q into a new predicate, (P : Q). This predicate is satisfied by a Haskell
expression that normalizes to a term of the form (h : t) and whose component expressions
weakly satisfy the assertions h ::: P and t ::: Q. The default mode of interpretation of the
component predicates is weak because the semantics of the data constructor does not require
evaluation of its arguments.

2. The “arrow” predicate constructor is used to compose predicates that express properties of
case branches. An arrow predicate P → Q is satisfied by a case branch (p -> e) if, whenever the
case discriminator satisfies the pattern predicate, P , the body, e, of the case branch satisfies
Q.

Figure 5 contains a Haskell definition of the abstract syntax for the P-logic predicate language.

data Pr = Univ -- the Universal predicate
| UnDef -- the Undefined predicate
| ConPred (Name,[LS]) [Pr] -- a pattern predicate
| Strong Pr -- a strengthened predicate
| Predconst Integer -- a predicate asserting a constant value
| PredVar Name -- a predicate variable
| PArrow Pr Pr -- arrow predicates

data LS = Lazy | Strict deriving Eq

Fig. 5. Abstract syntax of predicates as Haskell datatype

4.2 Inference Rules for Properties of the Haskell Fragment

Constructor application Rules for constructor application are derived from a Haskell datatype
declaration. A datatype declaration serves to define the data constructors of the type, giving the
signature of each constructor as a sequence of type expressions.

data T = · · · | C(k) τ1 . . . τk | · · ·

Notice that the strictness annotations from the signature of a constructor are represented explicitly
in the abstract syntax of a constructor application, although they are not manifested in the concrete
syntax.

A constructor application is lifted to a predicate constructor application by the function:

conApp :: E -> [Pr] -> Pr
conApp (ConApp (n,ls) es) prs =

let prs’ = take (length ls) prs
s = and (map (\(pr,l) -> isStrong pr || l==Lazy) (zip prs’ ls))

where isStrong (Strong _) = True
isStrong _ = False

in if s then Strong (ConPred (n,ls) prs’)
else ConPred (n,ls) prs’

where ls lists the strictness declaration (Lazy or Strict) of the constructor in each argument
position. Notice that when a predicate constructor lifted from a strict data constructor is applied
to a predicate argument, the resulting predicate is strong only if the argument predicate is so,
whereas a predicate derived from a lazy data constructor is always strong. A strong predicate
formula $C(k) P1 . . . Pk is satisfied by a well-defined term of the form C(k) t1 . . . tk whenever each
of the tj satisfies the corresponding predicate Pj .

The rule schemas for properties of a constructor application are:

Γ `P t1 ::: P1 · · · Γ `P tk ::: Pk

Γ `P C(k) t1 . . . tk ::: C(k) P1 . . . Pk
(1 ≤ k) (1)

and, where C and K are distinct constructors in the same data type:

Γ `P C(k) t1 . . . tk ::: $¬K(n) Univ . . .Univ︸ ︷︷ ︸
n−times

(2)

4.3 Pattern matching

Match clauses have associated with them predicates of a distinct kind. A match clause whose
expression body has the Haskell type (τ) may satisfy a predicate of type Maybe Pred τ . These
predicates are formed either with the unary predicate constructor Just or the nullary constructor
Nothing.

{--- the pattern predicate ---} pat2pred :: P -> [Pr] -> Pr
pat2pred p plist = fst (patPred p (zip (fringe p) list) True)

{--- pattern domain predicate ---} dom p = pat2pred p (replicate pl Univ)
where pl = length (fringe p)

patPred :: P -> [(Name,Pr)] -> Bool -> (Pr,Bool)
patPred (Pvar x) sigma b =

(purify (lookup x sigma), is_strong (purify (lookup x sigma)))
where
is_strong (Strong _) = True
is_strong _ = False

patPred Pwildcard sigma b = (Univ,False)
patPred (Ptilde p) sigma b = patPred p sigma False
patPred (Pcondata n ps) sigma b =

let (ConPred "List" preds, s) = map_patPred ps sigma b
in

if (s || b) then
(Strong (ConPred n preds), True)

else (Univ, False)

map_patPred :: [P] -> [(Name,Pr)] -> Bool -> (Pr,Bool)
map_patPred [] sigma b = (ConPred "List" [], False)
map_patPred (p:ps) sigma b = (ConPred "List" (pp:pps), s1 || s2)

where
(pp,s1) = patPred p sigma b
(ConPred "List" pps,s2) = map_patPred ps sigma b

Fig. 6. Calculation of Pattern Predicates

Pattern predicates Because patterns may be nested to arbitrary depths, it is inconvenient to use
the syntax of patterns directly in rules. Instead we define a syntactically flattened representation
for patterns to allow a simpler representation of pattern predicates in rules.

We define a function that produces a pattern predicate from a pattern and an environment
that binds predicates to the variables in the fringe of the pattern. Note that

fst(x, y) = x and zip [a1, . . . , an] [b1, . . . , bn] = [(a1, b1), . . . , (an, bn)]

Definition 3 (Pattern predicate) The pattern predicate formed by instantiating a pattern rel-
ative to a predicate environment is defined inductively by the Haskell function pat2pred in Figure
6. We use the notation π(p) to designate a “flattened” pattern predicate constructor.

The pattern predicate calculated by pat2pred will ignore control-disabled subpatterns that
occur in a pattern, replacing them by the universal predicate, Univ, unless an explicitly strengthened
predicate is bound in the environment to a variable in the fringe of such a subpattern. In such a case,
the “skeleton” of the subpattern is fully elaborated in the pat2pred computation. In consequence,
if an instance of a verification rule such as Rule (3) uses strong predicates in its hypotheses, then
the pattern predicate in its conclusion will require a pattern match that evaluates all subterms
that are asserted by the strong predicates to be well-defined.

For example, two pattern predicates that are derived from one of the patterns given in the
examples of Table 1 are:

π(T ∼(S x) y) Univ Univ = $(T Univ Univ)
π(T ∼(S x) y) $Univ Univ = $(T $(S $Univ) Univ)

The strength annotation on the first predicate argument in the second line above forces the pattern
predicate to assert definedness of the subpattern (S x).

The domain of a pattern Informally, the domain of a pattern is the set of terms that match the
pattern. The criterion for matching patterns in Haskell is complicated somewhat by the possibility
that a control-disabled subpattern may be embedded into a normally stricter host pattern. In
program execution, the match of a control-disabled pattern that is embedded in a case branch is
deferred, pending evaluation of the body of the case branch. The match is dynamically performed
only if the body is strict in a variable that occurs in the pattern. When a match failure occurs
during a deferred pattern match, the match failure is unrecoverable.

We define the domain of a pattern as a predicate characterizing the set of terms matching the
pattern in an non-deferred match.

Definition 4 (Pattern Domain Predicate) The domain predicate of pattern p,Dom(p), is the
predicate defined by applying the predicate pattern constructor derived from a pattern, p, to a list
of Univ predicates.

Dom(p) =def π(p) Univ · · ·Univ

The domain predicate of a pattern is calculated by the Haskell function dom shown in Figure 6.

Notice that Dom(p) is either Univ or it is a strong predicate.
The formula ¬Dom(p) asserts that a term fails to match p or is undefined. A strengthened

domain predicate disjoined with its strong complement is in effect, a partial definedness predicate.
Any term that satisfies either Dom(p) or $¬Dom(p) is well defined in every subterm necessary to
evaluate a control-enabled match with the pattern p.

Properties of case branches A case branch has a pair of properties, one that it exhibits when
a case discriminator matches its pattern and another that characterizes its behavior when pattern-
matching fails:

Γ, x1 ::: P1, · · · , xn ::: Pn `P t ::: Q

Γ `P {p -> t} ::: π(p) P1 · · ·Pn → $Just Q
(3)

where [x1, . . . , xn] = fringe p, and

Γ `P {p -> t} ::: $¬Dom(p) → $Nothing (4)

Properties of case expressions The basic rules for a case expression are those for a single case
branch:

Γ `P d ::: π(p)[P1, . . . , Pk] Γ `P br ::: π(p) P1 · · ·Pn → $Just Q

Γ `P case d of {br} ::: $Just Q
(5)

Γ `P d ::: $¬Dom(p)
Γ `P case d of {p -> t} ::: $Nothing

(6)

The following rules account for a case expression in which multiple case branches are listed.

Γ `P case d of {br} ::: $Nothing Γ `P case d of {brs} ::: $Q

Γ `P case d of {br; brs} ::: $Q
(7)

where Q has the kind Maybe Pred.

Γ `P case d of {br} ::: $Just P

Γ `P case d of {br; brs} ::: $Just P
(8)

` L ::: Univ ` R ::: $R
(1)

` (T L R) ::: $(T Univ $R)
(1)

x ::: Univ, y ::: $R ` y ::: $R

` {(T~(S x) y) -> y} ::: $(T Univ $R)→$Just $R
(3)

` case (T L R) of { (T~(S x) y) -> y } ::: $Just $R
(5)

` case (T L R) of { (T~(S x) y) -> y } ::: $R
(9)

` (T L R) ::: $¬(S Univ)
(2)

` case (T L R) of {(S x) -> x} ::: $Nothing
(6)

` case (T L R) of {(S x) -> x} ::: Univ
(9)

Fig. 7. Distinguishing Pattern Match Success from Failure in the Logic
(Numbers refer to the rule that applies at each step.)

Two rules relate a property of a Haskell term of kind Maybe Pred to a property of kind Pred.

Γ `P t ::: $(Just P)
Γ `P t ::: P

Γ `P t ::: $Nothing
Γ `P t ::: Univ

(9)

These rules allow a property of a case expression to be propagated to a context that expects
a property of kind Pred. When a pattern match can be proven to fail, the concluded property,
t ::: Univ, provides no specific information.

5 Related Work

As part of the Programatica[15] project at the Pacific Software Research Center, we are attempting
to develop both a formal basis for reasoning about Haskell programs, and automated tools for
mechanizing such reasoning. An important part of our work is to develop a logic with which to
manipulate Haskell terms.

Simon Thompson’s early effort to give a verification logic [17] for Miranda, a lazy, functional
language that was a predecessor to Haskell, exposed many of the difficulties inherent in adapting
a first-order predicate calculus for use as a verification logic. The logic for Miranda employs quan-
tification operators that bind variables to range only over defined terms, or over finite structures of
a datatype. The meanings of such quantifiers are extra-logical; they cannot be defined in the logic
itself.

Sparkle [2] is a verification tool for Clean [14], a lazy functional programming language. Sparkle
is a tactical theorem prover for a first-order logic, specialized to verifying properties of functional
programs. Expressions of the term language, Core-Clean, can be embedded in propositions, includ-
ing logical variables bound by universal or existential quantifiers. The Sparkle logic has a notation
to express an undefined value but does not provide modalities.

In formulating P-logic, we are interested in models constructed of the unbounded terms of a
specific abstract syntax. From the Stratego language[16] we learned of data constructor congruences,
whereby the initial algebra property of a freely constructed datatype is used to lift strategies for
rewriting the arguments of a particular construction into a homomorphic strategy for rewriting the
construction itself. In P-logic, constructor congruences are used to form homomorphic predicates
satisfied by constructed terms from predicates that characterize subterms.

A different kind of modality is used in P-logic to characterize normalization of terms by differ-
entiating strong and weak satisfaction criteria. The introduction of this modality was inspired by a
three-valued propositional logic, WS-logic [13], which conservatively extends classical propositional
logic, with the notable exception that the trivial sequent, P ` P is not sound.

A modality analogous to the weak—strong modality of P-logic was introduced by Larsen [12] to
discriminate must and may transitions in a process algebra. He observed that conventional process
models specify only may, or nondeterministic, transitions and therefore, only safety properties can
be stated of such a model. By introducing must, or required transitions, it is also possible to assert
liveness properties.

Huth, Jagadeesan and Schmidt [10] generalized Larsen’s analysis and provided a semantic
interpretation of the modality in a more general framework. Their semantic interpretation of a
predicate is a pair of power-domain elements, (P⊥, P>), where P⊥ is downward-closed and P> is
upward-dense. These interpretations are used in modeling may and must properties, respectively.
This general characterization of predicate interpretations also applies to the weak and strong
notions of predicate satisfaction that we have used in P-logic.

All programming logics must confront the issue of undefinedness because all programming
languages admit programs which are undefined for some inputs. Among the sources of such unde-
finedness are non-termination, pattern-matching failure, arithmetic errors (e.g., division by zero),
etc. Partial logics—logics that deal with undefinedness—have been studied intensely for years as a
basis for programming logics. A far from complete list includes [13, 6, 7, 1, 3, 5, 11]. For an excellent
overview, the interested reader should consult Farmer[3].

6 Conclusion

Figure 7 presents a sample derivation demonstrating how P-logic distinguishes pattern-matching
success and failure. The second proof involves a case expression which generates a pattern match
failure. Significantly, the strongest property derivable of this expression in P-logic is also the one
which contains no information at all: namely, Univ.

We have presented a two succinct formalisms that specify the dynamic and axiomatic semantics
of Haskell pattern-matching, a surprisingly complex aspect of the language. The deferred matching
that is required of control-disabled (∼) patterns is of particular interest. In the dynamic semantics,
expressed as a meta-language program in Haskell, a deferred pattern match is embedded in a
continuation that substitutes the value bottom in the bindings of pattern variables in case the
match fails. In the verification logic, a pattern predicate is calculated from the pattern and the
predicates assumed to be necessary to prove a property of the body of a case branch. This also
ensures that a proof of properties will discriminate between failure of a deferred match and failure
of a normal match.

P-logic is a verification logic for all of Haskell98, although we have only shown the part dealing
with Haskell’s fine control of demand here. The standard interpretation of P-logic and its soundness
with respect to this model have been demonstrated, although it is beyond the scope of the current
paper to describe them here.
Acknowledgment The authors wish to thank their colleagues on the Programatica project, par-
ticularly John Matthews, Jim Hook, Mark Jones and Sylvain Conchon for their encouragement
and for numerous discussions on aspects of logic and Haskell semantics.

References

1. Jen H. Cheng and Cliff B. Jones. On the usability of logics which handle partial functions. In
C. Morgan and J. C. P. Woodcock, editors, Proceedings of the Third refinement Workshop, Workshops
in Computing Series, pages 51–69, Berlin, 1991. Springer-Verlag.

2. Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer. Theorem proving for functional pro-
grammers. In Proceedings of the 13th International Workshop on the Implementation of Functional
Programming Languages (IFL’01), pages 99–118, September 2001.

3. William M. Farmer. Reasoning about partial functions. Erkenntnis, 43:279–294, 1995.
4. Jean-Yves Girard. Proofs and types, volume 7 of Cambridge tracts in theoretical computer science.

Cambridge University Press, 1989.
5. David Gries and Fred B. Schneider. Avoiding the undefined by underspecification. In Jan van Leeuwen,

editor, Computer Science Today: Recent Trends and Developments, number 1000 in Lecture Notes in
Computer Science, pages 366–373. Springer-Verlag, New York, NY, 1995.

6. Raymond D. Gumb and Karel Lambert. A free logical foundation for nonstrict functions. In Proceedings
of the CADE-13 Workshop on the Mechanization of Partial Functions, pages 39–46, 1996.

7. Raymond D. Gumb and Karel Lambert. Definitions in nonstrict positive free logic. Modern Logic,
7:25–55, 1997.

8. Carl A. Gunter. Semantics of Programming Languages: Programming Techniques. The MIT Press,
Cambridge, Massachusetts, 1992.

9. William Harrison, Timothy Sheard, and James Hook. Fine control of demand in haskell. In 6th
International Conference on the Mathematics of Program Construction, Dagstuhl, Germany, volume
2386 of Lecture Notes in Computer Science, pages 68–93. Springer-Verlag, 2002.

10. Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems: A foundation for
three-valued program analysis. Lecture Notes in Computer Science, 2028, 2001.

11. B. Konikowska, A. Tarlecki, and A. Blikle. A three-valued logic for software specification and validation.
Fundamenta Informaticae, XIV:411–453, 1991.

12. K. G. Larsen. Modal specifications. In J. Sifakis, editor, Proceedings of the International Workshop on
Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 232–246, Berlin,
June 1990. Springer.

13. Olaf Owe. Partial logics reconsidered: A conservative approach. Formal Aspects of Computing,
5(3):208–223, 1993.

14. Rinus Plasmeijer and Marko van Eekelen. Functional programming: Keep it clean: A unique approach
to functional programming. ACM SIGPLAN Notices, 34(6):23–31, June 1999.

15. Programatica Home Page. www.cse.ogi.edu/PacSoft/projects/programatica. James Hook, Princi-
pal Investigator.

16. Stratego Home Page. www.stratego-language.org.
17. Simon Thompson. A Logic for Miranda, Revisited. Formal Aspects of Computing, 7:412–429, 1995.
18. Phillip Wadler. The essence of functional programming. 19th POPL, pages 1–14, January 1992.

