
Programatica Tools
for

Certifiable, Auditable Development
of

High Assurance Systems
in

Haskell

Mark P. Jones, James Hook, Thomas Hallgren
OGI School of Science & Engineering at OHSU

Beaverton, Oregon

Flashback to HCSS in 2001:

We had assembled a team …

… but the Programatica Project had not
officially started …

I presented our vision of what
Programatica might become …

The Programatica Vision:

Build a program development environment that
supports and encourages its users in thinking
about, stating, and validating key properties.

Enable programming and validation to proceed
hand in hand, using properties to link the two.

Allow users to realize benefits gradually by
choosing between varying levels of assurance.

Instrumenting
compiler

Execute & test

Random test
generator

Interactive
proof editor

Model checker

Theorem
proving

Isabelle

Alfa

HOL

User supplied,
domain-specific
toolsets…

Type checking

Haskell Programs
+

Properties
+

Certificates

Vision: Integrating
Evidence from
Multiple Sources

lo hi

Back then: Mockups

Today: Real, Working Tools

Back then: A view from 2020
In it’s time, Programatica was the most
sophisticated program development
environment on the market;

“It scares me to think that we nearly
ended up in a world dominated by Java
technology … Programatica was a
godsend; we couldn’t have made the
transition to Haskell without it …”

James Gosling, Microsoft CEO, eComdex 2007

Today: The view from 2003

We’re on track to have a public release
of the tools early in the summer …

We’re preparing materials for a short
course on the Programatica approach to
software development, and on the
toolset, to coincide with the release …

Building High-assurance Software:
There are many ways to increase assurance:

Test programs on specific cases
Test programs on randomly generated test cases
derived from expected properties
Peer review
Use algorithms from published papers
Reason about equational properties
Reason about meta-properties (e.g., using types)
Use theorem provers to validate (translated) code
…

Each one can contribute significantly to increased
reliability, security, and trustworthiness

Evidence: A Unifying Feature

There are significant differences in the
applicability, assurance, and technical
details of each of these techniques.

But there is a common feature:
Each one results in some tangible form of
evidence that provides a basis for trust

Examples of Evidence:
There are many kinds of evidence:

An (input, expected output) pair for a test case
A property statement, and heuristics for guiding the
selection of “interesting” random test cases
A record of a code review meeting
A citation/URL for a published paper or result
An equational proof
A type and the associated derived property
A translation of the source program into a suitable
theory and a user-specified proof tactic
…

In Programatica, each different kind of evidence
is stored with the program as a certificate

Evidence and Certificates:
The certificate abstraction is designed to support:

Capture of evidence of validity (in many
different forms) and Collation with source
materials
Combination of evidence

Tracking dependencies and detecting when
evidence needs to be revalidated because of
changes in the source code

Management of evidence by analyzing and
reporting on what has been established,
identifying weaknesses, guiding further effort,
etc…

Programatica Components:

A semantically rich, formal modeling
language (Haskell)

An expressive programming logic that
can be used to capture critical program
properties (P-logic)

A toolset for creating, maintaining, and
auditing the supporting evidence
(pfe,cert,…)

Example: Modeling a Crypto-Chip
An example based (very loosely) on the
General Dynamics AIM crypto-chip
Conceptual view:

Split

Alg1

Alg2

Alg3

Merge

One chip, multiple channels
Channels may use different algorithms
GUARANTEED separation between channels

High-level Model:

chip :: Algs → ([Packet]→ [Packet])

type Packet = (ChannelId, Payload)

Map channels to
algorithms

Packet Filter

Channel Id Data

The Separation Property:
assert Separation =

All algs :: Algs.

All select :: (ChannelId → Bool).

{ filter (select . fst) . chip algs }

===

{ chip algs . filter (select . fst) }

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=

The Separation Property:

This law guarantees that:
Outputs do not depend on inputs to
other channels.
Channels do not generate spurious
outputs.

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=

Putting Programatica to Work:

Our goal is to build tools that will help
to establish and automate validation of
properties like this

We have described the non-interference
property at a high-level

But we want to model the chip at a
level that is closer to its implementation
on silicon

Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Basic architecture: Receive packets, save
in shared memory.

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Basic architecture: Load saved registers &
algorithm for channel.

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Basic architecture: Invoke lower engine
to process packet.

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Save register set, if
lower engine completes
successfully.

Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Basic architecture: Zero out shared
register set.

Upper Engine

0

Shared Memory RegF

RegF

RegF
RegF

Alg

Alg

Alg

Registers

Lower Engine

Algorithm

Basic architecture: Pass processed packet
data to output.

Upper Engine

Shared Memory RegF

RegF

RegF
RegF

Alg

Alg

Alg

Registers

Lower Engine

Algorithm

Building the Model:
We developed an executable model of the
chip as a Haskell program: (260 LOC)

lo hi

Memory

MemMonad

StateMonad

Alg (algorithms) ChipModel

FM (finite maps)

Generic
Components

Application
Specific
Components

Execution (upper engine):
Processing of a single packet in the upper
engine is described by a function:
onePacket ::

Algs ->
Packet -> State (Memory, Regs)

(Maybe Packet)

Processing of packet streams:
chip :: Algs -> [Packet] -> [Packet]
chip algs = catMaybes .

loop (onePacket algs)
(initMem, initRegs)

Execution (upper engine):
onePacket algs (chan, ws)
= do regs <- inSnd readState

rng <- inFst (malloc ws)

let alg = algs `at` chan

regfile = regs `at` chan

valid = includes rng

code = runAlg (alg (fst rng) regfile)

res <- inFst (runProtected valid code)

case res of

Nothing -> return Nothing

Just regfile' ->

let regs' = extend chan regfile' regs

in do inSnd (setState regs')

packet <- inFst (readPacket rng)

return (Just (chan, packet))

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Why Haskell?

One reason: no hidden side-effects

Purity: if f is a function of type A → B, the result of f x
will depend only on x

Monads: using abstract datatypes to encapsulate and
control the scope of effects explicitly:

inFst (runProtected valid code)

Language semantics enforces protection, without lower
level OS/API wrapper.

See Peter White’s talk for more …

each of
the files
in the
model

appears
here

syntax
colored
source
text

appears
here

context
sensitive
messages
show up

here

standard menus, navigation,
browsing, options & certificate
management actions are here

The Programatica Front End:

The GUI, pfebrowser, usually provides the
most convenient interface for working with
Programatica

A command line tool,
pfe, is also available

Both are useful tools
in their own right for
Haskell programmers

Usage: pfe [options] <command>
where <command> is one of:
new <files> -- create a new project containing <files>
add <files> -- add files to the project
remove <files> -- remove files from the project
files -- list files in the project
options -- show options in effect
modules <modules> -- list modules in the project
graph <modules> -- show module dependecy (sub)graph
dotgraph <modules> -- dot format module dependency graph
revgraph <modules> -- show reverse module dependecy (sub)graph
unused <modules> -- show unimported and unreachable modules
prune <modules> -- remove unreachable modules from the project
file <modules> -- which file is the module in
module <files> -- which module does the file contain
defined <modules> -- list entities defined in the module
free <modules> -- list names referenced but not defined in the module
pragmas <modules> -- extract pragmas from modules
lex <files> -- show the result of lexical analysis
exports <modules> -- list entities exported by the modules
find <identifiers> -- find exported entities with the given names
inscope <modules> -- list entities in modules' top-level environment
pp <modules> -- parse and pretty-print modules
tc <modules> -- type check and display decorated modules
tcpb <modules> -- remove pattern bindings, then tc
tclc <modules> -- remove list comprehensions, then tc
types <modules> -- show types/kinds of top-level entities
instances <modules> -- list instances defined in a module
iface <modules> -- show the interfaces of modules
usedtypes <modules> -- show what types identifers are used at
chase <files> -- look for imported modules in given files/directories
htmlfiles <modules> -- generate HTML files for modules
deps <modules> -- compute dependency graph for value definitions
tdeps <modules> -- compute dependency graph for value definitions
dotdeps <modules> -- dot format dependency graph for value definitions
tdotdeps <modules> -- dot format dependency graph for value definitions
needed <M1.x1 ... Mn.xn> -- needed values
tneeded <M1.x1 ... Mn.xn> -- needed values
neededmodules <M1.x1 ... Mn.xn> -- names of modules containing needed values
tneededmodules <M1.x1 ... Mn.xn> -- names of modules containing needed values
dead <M1.x1 ... Mn.xn> -- dead code (default: Main.main)
tdead <M1.x1 ... Mn.xn> -- dead code (default: Main.main)
uses <M.x> -- find uses of an entity
assertions <modules> -- list names of named assertion
asig <M.x> -- write an assertion signature to stdout
tasig <M.x> -- write an assertion signature to stdout
adiff <M.x> -- compare an assertion signature with stdin
tadiff <M.x> -- compare an assertion signature with stdin
qc <modules> -- translate to QuickCheck
slice <M.x> -- extract a slice (needed part) of the program
pqc <M.x> -- pruned translation to QuickCheck
qcslice <M.x> -- translate a slice to QuickCheck
prove <modules> -- translate to Stratego
clean -- list files in the project

A Development Environment:
Standard Haskell
compilers and
interpreters are
used to compile
and execute code

pfebrowser provides
sophisticated browsing
capabilities with
hyperlinking, integrated
type checking, …

Programatica is a program development environment

Using Properties:
We annotated the model with properties …

lo hi

… and quickly spotted bugs in our code!

Programatica: “Programming
as if Properties Matter”
Properties are

written
parsed
analyzed
type-checked

as an integral part of the source text

Goals:
Maintain consistency between code and properties
Capture programmer expectations/intentions as part
of the programming process
Just writing down properties heightens thinking about
correctness

Extreme Programming

Tests

Implementation

Testing and Programming proceed hand
in hand
Testing reveals errors in the program
Programming reveals errors in the test
cases

“Extreme Formal Methods”

Specification

Implementation

Programming and Validation proceed
hand in hand
Validation reveals errors in the program
Programming reveals errors in the
specification

Generating Evidence:
We began the process of validation, using QuickCheck to
generate random test cases for asserted properties

lo hi

… and found bugs in
our specification!
… and bugs in our
code!

Gathering Evidence:

cert

c2 cn
…

source

dependency
info

c1

descriptor Other files or folders
that are needed by

this certificate.

hi

cached
browser

data

source source…

Source materials are stored with related evidence and
dependency information.

A “hidden information” directory is shared between the files
in a package.

Using QuickCheck:

QuickCheck is an independently developed
random testing tool (Hughes and Claessen,
Chalmers University, Sweden)

Haskell developer’s perspective:

Haskell
program

+
property

annotations

rngExecutable
Code

QuickCheck
Library

Passed n tests; or

Failed with
counterexample

Using QuickCheck with pfe:

Programatica implementer's perspective:

QuickCheck
Library

Executable
Code

rng

Haskell
program

+
property

annotations

Slicing

(Slicing is a reusable
transformation that
reduces the size of the
code that is passed to
QuickCheck, and eliminates
spurious dependencies)

Programatica
source

Passed n tests; or

Failed with
counterexample

Using QuickCheck with pfe:

Programatica user’s perspective:

QuickCheck
Library

Executable
Code

rng

Haskell
program

+
property

annotationsThe QuickCheck Server

Programatica
source

Passed n tests; or

Failed with
counterexample

Servers and Certificates:

cert

c2 cn
…

source

dependency
info

c1

descriptor

hi
cac
hed
bro
wse

r
dat
a

source source…

Server

4
5

certificates

1
Evidence

Management
Tools

Registry3

2

Use of a registry enables a
flexible, extensible system

Use of servers and certificates
permits a generic interface that
automates/hides the translation
between Programatica and any
external tools

External
Tool

The Registry:
Once again we are exploiting the existing filesystem in
a design for the registry that is extensible, language
neutral, and portable:

$PROGRAMATICA

other stuff

…

registry

other servers

isayso

quickcheck

alfaBridge

freeThm

defn2eqn

…

other stuff

icon.gif

server.attr

scripts

…

name:quickcheck
version: 1.06
release: Nov 7, 2002
install: Mar 4, 2003
src: www.cs.chalmers.se
description: random test case generator
md5:b399b46a6695ca610e681517ba03dd67
…

server
descriptor

Servers in pfe:

Current implementation includes:
“Paper and Pencil” (I say so!)
QuickCheck
Alfa (a proof assistant based on
constructive type theory)

Others currently in progress/under consideration
include:

Free theorem generator
Regression testing
Isabelle (HOL theorem prover)
Bounded model checker

Certificates in pfebrowser:

lo hiStronger Evidence:
We began to construct a formal (hand) proof of
Separation …

The overall structure is modular:

Properties
of

Memory

Properties
of

onePacket

Separation
for the
chip

Properties
of

State

Properties
of
FM

Properties
of

MemMonad

lo hiCombining Evidence:
We began to construct a formal (hand) proof of
Separation …

The overall structure is modular:

A

E S

B

C

DA,B ` D

B,C ` E

D ` E

E ` S

` S

` A

` B

` C

Validation and Combination:
We want to validate and combine evidence from
different sources:

Certificates carry sequents “Assume ` Conclude”
that act as an interface/contract between
Programatica and any external tools.

Servers for external tools are used to test validity
(i.e., to check that a certificate’s sequent is consistent
with its evidence)

Built-in servers use sequents of existing certificates to
guide the construction of new, composite certificates.

lo hiIntegrating Evidence:
Multiple tools can play a role in validating or
assuring behavior of the system as a whole:

A

E S

B

C

DA,B ` D

B,C ` E

D ` E

E ` S` C

` A

` S

` B

Separation Fails!:
We uncovered two bugs in our attempt to prove
separation:

lo hi

• Separation fails if an algorithm can fail to terminate
Alg1

⊥

Alg3

Alg1

⊥

Alg3

≠
• Separation fails because the algorithm for a channel sees

the absolute address of packets in shared memory.
• Is this a bug in the code or the specification?
• Is this a security loophole?
• Several fixes are available: relative addressing, zeroing

out memory, etc…

This is useful feedback for the designer/developer to discuss!

Dealing with Change:

Our model, our specification, or both must be
revised to complete the task in hand

Whatever happens, some of the evidence we
have collected may no longer be valid.

Some evidence can be reconstructed
automatically, but some will be quite expensive
to reconstruct

In software development, change is the norm,
not the exception, so we need to handle
change as efficiently as possible.

Hashing to Detect Change:
When we parse a source file, we calculate a
cryptographically robust hash (e.g., MD5) over the
abstract syntax of each definition

These hashes are cached as hidden information:
0cc175b9c0f1b6a831c399e269772661
92eb5ffee6ae2fec3ad71c777531578f
81a5fe3d544359af13848e6192ece475
445a4ca24e10824e03ef42e2e1d755d9
987dd8f5f1293857dc7932c14c7f3d80
8b3ee2a3933b9c01878bcddc298ff9e2
bb53046df3ef7793ee7c37aec0d090d0
ad797e6f29cf558f7aeb8200563ecd3a
8959f36e873441e58dcc9222777b6d47
84de7ff93b201e8c5b4cf0e006dfe848
7a5acfc765e1875a49daffd8561ae025

If we find a definition whose hash is not listed, then it
must be new/modified.

Using a Dependency Graph:

a

d

f

c

h

j

il

k

gem b

Properties

Definitions

Primitives

Using a Dependency Graph:

a

h

j

il

k

b

d
New Definition!

f

c

gem

Properties

Definitions

Primitives

Using a Dependency Graph:

a

d

Potential change f

c

h

j

il

k

gem b

Properties

Definitions

Primitives

Benefits of Hashing:

Fine-grained dependency analysis reduces the
cost of reconstructing evidence after the
program has been modified

By hashing over abstract syntax, we do not
flag any changes if the source text is
reformatted, if comments are changed, etc…

Management Activities:
Evidence management tools let users ask (and
answer) questions like the following:

What properties have I verified (or not)?

What tools did I use?

Is the evidence up to date & consistent with the code?

What other verification strategies should I pursue?

Where am I most vulnerable?

What should I do next?
Scoring & prioritization
mechanisms required

Summary:

Solid foundations:
Precise, formal semantics for Haskell
A sound & expressive programming logic, P-logic

Extensible tools:
A flexible infrastructure for certification
A small but growing collection of servers

A vision for high-assurance development:
Extends & integrates current methodologies
An evolution path for applying formal methods

	Programatica ToolsforCertifiable, Auditable DevelopmentofHigh Assurance SystemsinHaskell
	Flashback to HCSS in 2001:
	The Programatica Vision:
	Back then: Mockups
	Today: Real, Working Tools
	Back then: A view from 2020
	Today: The view from 2003
	Building High-assurance Software:
	Evidence: A Unifying Feature
	Examples of Evidence:
	Evidence and Certificates:
	Programatica Components:
	Example: Modeling a Crypto-Chip
	High-level Model:
	The Separation Property:
	The Separation Property:
	Putting Programatica to Work:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Building the Model:
	Execution (upper engine):
	Execution (upper engine):
	Why Haskell?
	The Programatica Front End:
	A Development Environment:
	Using Properties:
	Programatica: “Programming as if Properties Matter”
	Extreme Programming
	“Extreme Formal Methods”
	Generating Evidence:
	Gathering Evidence:
	Using QuickCheck:
	Using QuickCheck with pfe:
	Using QuickCheck with pfe:
	Servers and Certificates:
	The Registry:
	Servers in pfe:
	Certificates in pfebrowser:
	Stronger Evidence:
	Combining Evidence:
	Validation and Combination:
	Integrating Evidence:
	Separation Fails!:
	Dealing with Change:
	Hashing to Detect Change:
	Using a Dependency Graph:
	Using a Dependency Graph:
	Using a Dependency Graph:
	Benefits of Hashing:
	Management Activities:
	Summary:

