Programatica Tools
for

Certifiable, Auditable Development
of
High Assurance Systems
in
Haskell

Mark P. Jones, James Hook, Thomas Hallgren
OGI School of Science & Engineering at OHSU
Beaverton, Oregon

Flashback to HCSS in 2001:

#We had assembled a team ...

... but the Programatica Project had not
officially started ...

@] presented our vision of what
Programatica might become ...

The Programatica Vision:

Build a program development environment that
supports and encourages its users in thinking
about, stating, and validating key properties.

Enable programming and validation to proceed
hand in hand, using properties to link the two.

Allow users to realize benefits gradually by
choosing between varying levels of assurance.

=lolx|
Help

e demory o> adie > vord > Werory d Om a | n- Sp e Clﬂ C
Type checking s ‘
generator proving \
(]

Alfa

atica [Separation Pre
View Project B
Fragramatica Dema
©- [stgmarguelude
e[st i
e Imoff
@ [T separation Model
§ O memory
6] Types
&[T values
= Froperties —- writing to memor® is function extension;
@ [Algoritims
©- [RegFile -
@[ChipModel
(s £
+ LD
r
iler proof editor

¥ | e — User supplied,
)i toolsets...
Execute & test / \ Model checker
Instrumenting Interactive X

Vision: Integrating \/ | Isabelle
Evidence from .®h oL
Multiple Sources

Back then: Mockups

[Programatica [Separation Project] O] x|

File Edit View Project Build Debug Tools Options Window Help
megramatica Dero] —— reading Troim memory 13 JusSt Tunctlon applicatlon: -
&~ [Standard Prelude P read i Memory —» Addr -» Word]
& 7 Standard Libraries fread mem addr = mem addr

@] Monad Transformers

% [Separation Model : _

& @8 Memony propexrty BeadEmpty = A1l a::Addr. E‘ Edit Certificate
& = Types read empty a Update
& [values Copy
@-D il —— writing to mewory iz function ext cut

@ [Algarithms Nwrite i: Memory —> Addr -> Tg

_ : Delete
@ [RegFile HJwrite mem addr wal

@ [ChipMode = Yaddr' -» if addr==_lse mem addr!

propexrty BeadWrite = A1l [a::Addr).
: All (t::Word) .
A1l (m::iMemwory) .

read (wWrite wm a W) a == w

propexrty WriteWrite = A1l (a::Addr). [] [j

All (w,w' :: Word).
A1l (m::Memory) .
write (write m a w') & W = write m a w

Today: Real, Working Tools

U3 PFE Haskell Browser: ChipModel

| File & | view & | Windows [3|

Module Graph H:J

3
e
SHHHEE
O P

ipModel.hs

MemMonad.hs

File: [Chiptiode].hs

<}:|o| o | Module: ‘Chipl"lndel

‘ |Impurts EI| ‘Impurted By EI|

onePacket
onePacket
= do req
rhg
let

res
Cas
il

chip

lzzert Se
= All
Al

++ Algs -» Packet —» State (Memory, Regs) (Mauybe Packet)

algs (chan, ws)
= - inSnd readState
- inFst (malloc WS

alg = algs "at’ chan

regfile = regs “at” chan

valid = includes rng

code = runfilg {alg (fst rrg) regfile)
<~ inFst (runProtected walid code)

e res of

othing = returh Mothing

Just regfile’ -» let regs' = extend chan regfile’ regs
in do inSnd (setState regs')
packet <- inFst (readPacket rng)
return Just (chan, packet))

t+ Algs —» [Packet] - [Packet]

chip algs = catMaybes . loop lonePacket algs) (initMem, initRegs)

=
paration -

algs :: Algs,
1 select :: Channel - Bool,
{filter (select , fst) , chip alost

{chip algs |, filter (select , fst)}

U PFE Haskell Browser: Certlnfo

Certicifate: seplizl_say_so

Certifies: SeparateChannels

Harked walid on: Thu Feb 13 17:02:17 PST 2003

Depends on:

Created by: hallgren

About this certificate type: A perzon certifies the validity of an aszertion

[

Back then: A view from 2020

#In it's time, Programatica was the most
sophisticated program development
environment on the market;

#" [t scares me to think that we nearly
ended up in a world dominated by Java
technology ... Programatica was a
godsend; we couldn’t have made the

transition to Haskell without it ..."”
James Gosling, Microsoft CEO, eComdex 2007

Today: The view from 2003

#®\We're on track to have a public release
of the tools early in the summer ...

®We're preparing materials for a short
course on the Programatica approach to
software development, and on the
toolset, to coincide with the release ...

Building High-assurance Software:

There are many ways to increase assurance:

Test programs on specific cases

Test programs on randomly generated test cases
derived from expected properties

Peer review

Use algorithms from published papers

Reason about equational properties

Reason about meta-properties (e.g., using types)
Use theorem provers to validate (translated) code

Each one can contribute significantly to increased
reliability, security, and trustworthiness

Evidence: A Unifying Feature

There are significant differences in the
applicability, assurance, and technical
details of each of these techniques.

#But there is a common feature:

= Each one results in some tangible form of
evidence that provides a basis for trust

Examples of Evidence:

There are many kinds of evidence:
= An (input, expected output) pair for a test case

= A property statement, and heuristics for guiding the
selection of “interesting” random test cases

= A record of a code review meeting

= A citation/URL for a published paper or result
= An equational proof

= A type and the associated derived property

= A translation of the source program into a suitable
theory and a user-specified proof tactic

In Programatica, each different kind of evidence
is stored with the program as a certificate

Evidence and Certificates:

The certificate abstraction is designed to support:

. CaPture of evidence of validity (in many
different forms) and Collation with source
materials

= Combination of evidence

* Tracking dependencies and detecting when
evidence needs to be revalidated because of
changes in the source code

= Management of evidence by analyzing and
reporting on what has been establisheq,
identifying weaknesses, guiding further effort,
etc...

Programatica Components:

#® A semantically rich, formal modeling
language (Haskell)

#®An expressive programming logic that
can be used to capture critical program
properties (P-logic)

#®A toolset for creating, maintaining, and
auditing the supporting evidence
(pfe,cert,...)

Example: Modeling a Crypto-Chip

#® An example based (very loosely) on the
General Dynamics AIM crypto-chip

@ Conceptual view:

» Alg,

W e

| Algs

#® One chip, multiple channels
Channels may use different algorithms
#® GUARANTEED separation between channels

High-level Model:

chip :: Algs — ([Packet]— [Packet])
Yo

D

Map channels to Packet Filter
algorithms

type Packet = (ChannelId, Payload)

A A

Channel Id Data

The Separation Property:

assert Separation =
All algs :: Algs.
All select :: (ChannelId — Bool).
[17l cer (seleee o« 1sie) . dile alegs F

[dailo eles W iflEel (Seleee i o) bk

Alg, Alg,

A|gz I Algz .—>

Alg; Alg;

The Separation Property:

This law guarantees that:

Outputs do not depend on inputs to
other channels.

Channels do not generate spurious
outputs.

Alg, Alg,
J%EA'%%% —_%gmz%%.ﬂ
Alg; Alg;

Putting Programatica to Work:

#0ur goal is to build tools that will help
to establish and automate validation of
properties like this

#We have described the non-interference
property at a high-level

#But we want to model the chip at a
level that is closer to its implementation
on silicon

Basic architecture:

=)

Upper Engine

10!
Shared Memory Registers -~
10! 10!

*RegF

Lower Engine

~RegF

>
Q

~RegF

1I

~RegF

Algorithm

Basic architecture: %oV garg';;tgrrys_ave

o)

WSHARGAMERON Registers - | RegF | Alg
ﬁ ﬁ "RegF| | Alg
Lower Engine 1RegF| | Alg

"RegF

1I

Algorithm

Basic architecture:

=)

1I

Load saved registers &
algorithm for channel.

Shared Memory -
U U

Lower Engine

RegF| | Alg
RegF

Alg
RegF

=)

1T
o mgritm

Basic architecture:

j> Upper Engine

Invoke lower engine
to process packet.

1I

1 1

d
<

~RegF

=)

~RegF

>

~RegF

~RegF

1
o mgritm

Basic architecture:

=)

Save register set, if
lower engine completes

successfully.

Upper Engine

1I

Shared Memory -

1L

1L

Lower Engine

1I

=)

D
Q

Algorithm

' ' : Zero out shared
Basic architecture: (lieret

j> Upper Engine

u 1!

Shared Memory - JregF [Alg
3 ﬁ "RegF| | Alg
Lower Engine 1RegF| | Alg

"RegF

1I

Algorithm

Basic architecture: i b o ease Pt

= o

WSHARGAMERON Registers - | RegF | Alg
ﬁ ﬁ "RegF| | Alg
Lower Engine 1RegF| | Alg

"RegF

1I

Algorithm

Building the Model: @

We developed an executable model of the
ch1 p as a Haskell program: (260 LOC)

Memory StateMonad Generic
@ ______________________________ o Components
MemMonad FM (finite maps)
@ %ﬂ \V4 Appll_cgtlon
Specific g

Alg (algorithms) ChipModel Components

Execution (upper engine):

#® Processing of a single packet in the upper
engine is described by a function:

onePacket ::
Algs ->
Packet -> State (Memory, Regs)
(Maybe Packet)

Processing of packet streams:

chip :: Algs -> [Packet] -> [Packet]
chip algs = catMaybes .
loop (onePacket algs)
(1nitMem, 1nitRegs)

Execution (upper engine):

onePacket algs (chan, ws) = 7 o =
= do regs <- 1nSnd readState el
rng <- inFst (malloc ws) LU
let alg = algs at chan ””E“e
regfile = regs "at chan A
valid = includes rng
code = runAlg (alg (fst rng) regfile)

res <- inFst (runProtected valid code)
case res of

Noth1ing -> return Nothing
Just regfile' ->
let regs' = extend chan regfile' regs

in do inSnd (setState regs')
packet <- inFst (readPacket rng)
return (Just (chan, packet))

Why Haskell?

One reason: no hidden side-effects

Purity: if f is a function of type A — B, the result of f x
will depend only on x

Monads: using abstract datatypes to encapsulate and
control the scope of effects explicitly:
inFst (runProtected valid code)

Language semantics enforces protection, without lower
level OS/API wrapper.

See Peter White's talk for more ...

standard menus, navigation,
browsing, options & certificate

Programatica Haskell Browser: Memory

management actions are here

| File & | View [E] [Windows [| Cert [|

]

Module Grﬂph File: |HE|'I'II:IPH+I"IS |
-@—@ <}:-:|| m:';‘>| Module: |NENDPH | |Impurts EI| |Impurl;ed By E||
initMem 13 Memory N
ChipModel.hs inithen = {0, %a -» nulllord)
MemMonad.hs feadiiemn 4 Addr - Memary - Word
feadien a m =shd m a
’ t1itetemn 1 Addr —* Word > Memory —* Hemory
fm.hs riteMem a w (Free, mem)
= (free, “a' -» if a==a' then w else mem a')
syntax
+) readRange tt Range -» Memory =» [Word]
eadRange (1.ul m= [readdem a m | & <- [1,.u]] COIOred
l a1 LocHen 11 [Word] -» Memory > (Range, Hemory) source
_ | 51 locHen ws (Free, mem)
= let zize = length ws
each of b = free text
ub = free + zize
the files ma = (b, ub) ‘ appears
mem' = “a -+ if rhg includes a h
|n the then ws!{a-1b) ere
{ { ﬁlse mem &
in trhg, Lub, mem’
model |
| |
appears |
here LT
~_——' context
EEN sensitive
MESSages
show up

here

The Programatica Front End.:

#® The GUI, pfebrowser, usually provides the
most convenient interface for working with

Programatica

#® A command line tool,
pfe, is also available

Both are useful tools
in their own right for
Haskell programmers

Usage: pfe [options] <command>

where <command> is one of:
new <files> -- create a new project containing <files>
add <files> -- add files to the project

remove <files> -- remove files from the project
files —- Tist files in the project
options —- show options in effect

modules <modules> -- Tist modules in the project

graph <modules> -- show module dependecy (sub)graph

dotgraph <modules> -- dot format module dependency graph

revgraph <modules> -- show reverse module dependecy (sub)graph
unused <modules> -- show unimported and unreachable modules

prune <modules> -- remove unreachable modules from the project

file <modules> -- which file is the module in

module <files> -- which module does the file contain

defined <modules> -- Tist entities defined in the module

free <modules> -- 1ist names referenced but not defined in the module
pragmas <modules> -- extract pragmas from modules

lex <files> -- show the result of lexical analysis

exports <modules> -- Tist entities exported by the modules

find <identifiers> -- find exported entities with the given names
inscope <modules> -- list entities in modules' top-level environment
pp <modules> -- parse and pretty-print modules

tc <modules> -- type check and display decorated modules

tcpb <modules> -- remove pattern bindings, then tc

tclc <modules> -- remove 1list comprehensions, then tc

types <modules> -- show types/kinds of top-level entities

instances <modules> -- 1ist instances defined in a module

iface <modules> -- show the interfaces of modules

usedtypes <modules> -- show what types identifers are used at

chase <files> -- look for imported modules in given files/directories
htm1files <modules> -- generate HTML files for modules

deps <modules> -- compute dependency graph for value definitions
tdeps <modules> -- compute dependency graph for value definitions
dotdeps <modules> -- dot format dependency graph for value definitions
tdotdeps <modules> -- dot format dependency graph for value definitions

needed <M1.x1 ... Mn.xn> -- needed values

tneeded <M1.x1 ... Mn.xn> -- needed values

neededmodules <M1.x1 ... Mn.xn> -- names of modules containing needed values
tneededmodules <M1.x1 ... Mn.xn> -- names of modules containing needed values
dead <M1.x1 ... Mn.xn> -- dead code (default: Main.main)

tdead <M1.x1 ... Mn.xn> -- dead code (default: Main.main)

uses <M.x> -- find uses of an entity

assertions <modules> -- 1ist names of named assertion
asig <M.x> -- write an assertion signature to stdout
tasig <M.x> —- write an assertion signature to stdout
adiff <M.x> -- compare an assertion signature with stdin
tadiff <M.x> -- compare an assertion signature with stdin
qc <modules> -- translate to QuickCheck

sTice <M.x> -- extract a slice (needed part) of the program
pgc <M.x> —- pruned translation to QuickCheck

qcslice <M.x> —- translate a slice to QuickCheck

prove <modules> -- translate to Stratego

clean -- Tist files in the project

A Development Environment:

Standard Haskell
compilers and
interpreters are
used to compile
and execute code

#® pfebrowser provides

sophisticated browsing

capabilities with

hyperlinking, integrated

type checking, ...

bd Programatica Haskell Browser: ChipModel

[File @ [view & [windows (| cert G|
[[/| Fite: [Chiptodel.hs

Module Graph|--

<:30| o | Module: |ChipModel

| |Impurts EI| |Impurted By Ell

axChan

initRegs

khip

axChan 11

initRegz ::

hip algs =

code = rurAlg falg (st rng) regfilel
res 4- inFst (runProtected walid codel
caze reg of
Mothing =» return Hothing

Juzt regfile’ -» let regs'

Int
=B

Regs
= foldr ($)

1t Algs -» [Packet] > [Packet]
catMaybes |

bzzert Separation = ALl algs :3 AL

= extend chan regfile' regs
in do inSnd (setState regs')
packet <- inFst (readPacket rng)
return (Just (chan, packet])

enptyFH [extend ¢ oinitMem | cd-[1, .maxChan]]

loop' (onePacket algs) (initHem, initRegs)
93 .

ALl select :i (Channelld -> Boal) .

{ chip algs , filter (select , fst) }

{ Filter (select . fst) . chip alas F

Int

: Chiptodel ,maxChan, Yalue

#® Programatica is a program development environment

Using Properties:

We annotated the model with properties ...

b4 Programatica Haskell Browser: ChipModel

Module Graphl—(:J

Files

ChipModel.hs
MemMonad.h
Memory.hs

[State hs]

m.hs

Shifs)

I

i

—

=]
+)

| File B [view E [windows & | cert E|

File: |ChipHodel ,hs

<::D| o | Module: |EhipMode1

| |Impurts E|| |Impnrled By E||

code = runfilg Talg [fst rng) regfile)
res <- inFst (runProtected valid code)
caze res of
- return

regfile' -» let regs' = extend chan reafile' regs
in do inSnd (setState regs')
packet <~ inFst (readPacket rng)
return | [chan, packet))
axChan 11 Int
axChan

I+

00—

initFegs i: Regs
initRegs = foldr (%) emptyFM [extend c initMem | c<-[1,,maxChan]]

Chip tt fAlgs - [Packet] -» [Packet]
Chip algs = catMagbes . loop' {onePacket algs) (initMem, initRegs)

azsert = All algs :: Algs .,
All select :: (Channelld -» Bool) |
{ chip algs . Filter (zelect ., Fst)

{ filter (=elect , Fst) , chip algs

Feparation: ChipModel,Separation, Assertion

Lertificates: none, Create a new certificatel
Prelude, Prop

=

... and quickly spotted bugs in our code!

Programatica: "Programming
as if Properties Matter”

Properties are

#® written

#® parsed

analyzed

type-checked

as an integral part of the source text

Goals:
Maintain consistency between code and properties

@ Capture programmer expectations/intentions as part
of the programming process

Just writing down properties heightens thinking about
correctness

Extreme Programming

Tests

)
)

#® Testing and Programming proceed hand
in hand

@ Testing reveals errors in the program

#®Programming reveals errors in the test
cases

Implementation

i\/7 i\/7
i\/7 i\/7
i\/7 i\/7
i\/7 i\/7

“Extreme Formal Methods”

N l\ l\ N
Specification > > >

4 V V 4

N l\ l\ N
Implementation > > >

4 V V 4

#Programming and Validation proceed
hand in hand

#Validation reveals errors in the program

#®Programming reveals errors in the
specification

Generating Evidence: o n

We began the process of validation, using QuickCheck to
generate random test cases for asserted properties

bd Programatica Haskell Browser: Memory
[File @ [view & [windows &] cert @]

Module Graph - File: |Hem0r‘u,h3 |

HFiles—-) <j:m| cn::>| Module: |Hem0r‘9 ||Impurls E|| |Impurled By E|‘
beleazeten 1t Range -> HMemory -» Memory [
ChipModel.hs feleazetem (1b,ub) (free, mem) = if ub == free then
MemMonad.h (lh, “a -» if a < lb then mem &
elze readMem a initMem)
elze error "Memory must be deallocated from the
State.hs
includes +1 Range -> Addr -> Bool
includes (1,u) a = l<=a &4 adu
-
bizzert ReadEnpty = A1l attAdde . {readdem a initMem} === {nullllord}

azsert Readlirite =
All aiiAddr .
All withord .
All m:iMemory , {readdem a (writeMem a w m)} === {u}

bzzert lritellrite =
A1l a::iAddr .
ALl wethlord
ALl w'i:llord ,

Twritefem a v ., weiteflem a v'} === {uritebem a v} A and fou nd bugs |n

ppzzert WriteSuap = R — - I
| ' our specification!
Feadllrite: Hemory,Readll-ite, Assertion =

Lertificates: none, Create a new certificatel J e a nd bugs In Ou r
Frelude,Prop

L i _jcode!

Gathering Evidence:

source || source a source a H

cached
browser depe'n;-jency \
data 1o
& &
C1 C2 eus

H_}

descriptor | Other files or folders
that are needed by

this certificate.

Source materials are stored with related evidence and
dependency information.

A “hidden information” directory is shared between the files
in @ package.

Using QuickCheck:

#® QuickCheck is an independently developed
random testing tool (Hughes and Claessen,
Chalmers University, Sweden)

#® Haskell developer’s perspective:

Haskell ” | Executable |“~'| rng
program Code
=9

property | |QuickCheck % passed n tests; or
annotations Library | .
Failed with

counterexample

Using QuickCheck with pfe:

#® Programatica implementer's perspective:

| — > | Haskell
Slicing brogram
Programatica i
source QuickCheck property
Library annotations
8 Executable |~ | rng
Code
(Slicing is a reusable -
transformation that &> Passed n tests: or
reduces the size of the !
code that is passed to Failed with
QuickCheck, and eliminates counterexample

spurious dependencies)

Using QuickCheck with pfe:

#® Programatica user’s perspective:

Programatica
source

(-

The QuickCheck Server

‘= passed n tests; or

Failed with
counterexample

Servers and Certificates:

Evidence —— _
Management | 3 | Registry

NS

Use of a registry enablesa certificates Server
flexible, extensible system O—

Use of servers and certificates @
permits a generic interface that

automates/hides the translation
between Programatica and any External
external tools Tool

The Registry:

Once again we are exploiting the existing filesystem in
a design for the registry that is extensible, language

neutral, and portable:

name:quickcheck
version: 1.06
release: Nov 7, 2002
install: mMar 4, 2003

—$PROGRAMATICA |
registry
isayso
quickcheck icon.gif
alfaBridge | [LServer.attr
freeThm —LScripts
defn2eqn | [other stuff

other stuff

— other servers

src: www.cs.chalmers.se
description: random test case generator
md5:b399b4626695ca610e681517ba03dd67

A

server
descriptor

Servers in pfe;

Current implementation includes:
= Paper and Pencil” (I say so!)
= QuickCheck

= Alfa (a proof assistant based on
constructive type theory)

Others currently in progress/under consideration
include:
= Free theorem generator
= Regression testing
= Isabelle (HOL theorem prover)
= Bounded model checker

ertificates in pfebrowser:

U3 PFE Haskell Browser: ChipModel
| File & | view & | Windows [3|

Module Graph File: [Chiptiode].hs |

EI o> | Module: ‘ChiPHDdel ‘ |Impurts EI| ‘Impurted By EI|

i del.hs bnePacket :: Algs —» Packet —» State (Memory, Fegs) (Maybe Packet)
P : bnePacket algs (chan, ws)

) = do regz - inSnd readState

rng <= inFst (malloc ws)

3
e
SHHHEE
O P

MemMonad.hs let alg = algs "at’ chan
regfile = regs “at” chan
valid = includes rng
code = runfilg {alg (fst rrg) regfile)

res <- inFst (runProtected walid code)
caze res of
Hothing = returh Mothing
Just regfile’ -» let regs' = extend chan regfile’ regs
in do inSnd (setState regs')
packet <- inFst (readPacket rng)
return Just (chan, packet))

chip t+ Algs —» [Packet] - [Packet]
chip algs = catMaybes . loop lonePacket algs) (initMem, initRegs)

 csort Separation U PFE Haskell Browser: Certlnfo

= All algs o2 Algs, Certicifate; seplizl
e o 1 =eplitl_say_=o
HI%Fngect(,.lthanneé ? BDD&T los} Certifies: SeparateChannels
Sl CHsio i Ryl Marked valid on: Thu Feb 12 17:02:17 PST 2003
{chip algs |, filter (select , fst)} gﬁzzzgg EE; ikl
About this certificate type: A perzon certifies the validity of an aszertion

[

Stronger Evidence: o L

We began to construct a formal (hand) proof of
Separation ...

The overall structure is modular:

Properties
of — Properties
Memory of
ﬁ MemMonad
Properties
o 4
State
> Properties Separation
_ of — for the
Propefrt|es ﬁ onePacket chip
0
FM

Combining Evidence: @&

We began to construct a formal (hand) proof of
Separation ...

The overall structure is modular:

- A A >

ABFHD D

A
- B 5 Il pre

BF—>E - — .
A

EFS

- C C

=S

Validation and Combination:

We want to validate and combine evidence from
different sources:

Certificates carry sequents “Assume F Conclude”

that act as an interface/contract between
Programatica and any external tools.

Servers for external tools are used to test validity
(i.e., to check that a certificate’s sequent is consistent
with its evidence)

Built-in servers use sequents of existing certificates to
guide the construction of new, composite certificates.

Integrating Evidence: b@ﬂ

Multiple tools can play a role in validating or
assuring behavior of the system as a whole:

& =
= A A)

ABFED D
A ﬁ
~B B)| DrE
& B,CI—[E - —)
- C C gﬁ E-S

~s &

Separation Fails!: ol L

We uncovered two bugs in our attempt to prove
separation:
e Separation fails if an algorithm can fail to terminate

» Alg, » Alg,
- w%;«&a w%%r
> Algs

e A|g3

e Separation fails because the algorithm for a channel sees
the absolute address of packets in shared memory.
e Is this a bug in the code or the specification?
e Is this a security loophole?
e Several fixes are available: relative addressing, zeroing
out memory, etc...

This is useful feedback for the designer/developer to discuss!

Dealing with Change;

@ Our model, our specification, or both must be
revised to complete the task in hand

Whatever happens, some of the evidence we
have collected may no longer be valid.

Some evidence can be reconstructed
automatically, but some will be quite expensive
to reconstruct

@ In software development, change is the norm,
not the exception, so we need to handle
change as efficiently as possible.

Hashing to Detect Change:

#® When we parse a source file, we calculate a
cryptographically robust hash (e.g., MD5) over the
abstract syntax of each definition

These hashes are cached as hidden information:
0ccl75b9c0f1b6a831c399e269772661
92eb5ffeebae2fec3ad71c777531578f
81la5fe3d544359af13848e6192ece475
445a4ca24e10824e03ef42e2e1d755d9
987dd8f5f1293857dc7932c14c7f3d80
8b3ee2a3933b9c01878bcddc298ff9e2
bb53046df3ef7793ee7c37aec0d090d0
ad797e6f29cf558f7aeb8200563ecd3a
8959136e873441e58dcc9222777b6d47
84de7ff93b201e8c5b4cf0e006dfe848
7a5acfc765el1875a49daffd8561ae025

If we find a definition whose hash is not listed, then it
must be new/modified.

Using a Dependency Graph:

f

Properties

Using a Dependency Graph:

Properties

Using a Dependency Graph:

Properties

Benefits of Hashing:

Fine-grained dependency analysis reduces the
cost of reconstructing evidence after the
program has been modified

By hashing over abstract syntax, we do not
flag any changes if the source text is
reformatted, if comments are changed, etc...

Management Activities:

Evidence management tools let users ask (and
answer) questions like the following:

What properties have I verified (or not)?
What tools did I use?
Is the evidence up to date & consistent with the code?

What other verification strategies should I pursue?

Scoring & prioritization
mechanisms required

Where am I most vulnerable? }

What should I do next?

Summary:

Solid foundations:
= Precise, formal semantics for Haskell
= A sound & expressive programming logic, P-logic

#® Extensible tools:
a A flexible infrastructure for certification
= A small but growing collection of servers

A vision for high-assurance development:
= Extends & integrates current methodologies
= An evolution path for applying formal methods

	Programatica ToolsforCertifiable, Auditable DevelopmentofHigh Assurance SystemsinHaskell
	Flashback to HCSS in 2001:
	The Programatica Vision:
	Back then: Mockups
	Today: Real, Working Tools
	Back then: A view from 2020
	Today: The view from 2003
	Building High-assurance Software:
	Evidence: A Unifying Feature
	Examples of Evidence:
	Evidence and Certificates:
	Programatica Components:
	Example: Modeling a Crypto-Chip
	High-level Model:
	The Separation Property:
	The Separation Property:
	Putting Programatica to Work:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Basic architecture:
	Building the Model:
	Execution (upper engine):
	Execution (upper engine):
	Why Haskell?
	The Programatica Front End:
	A Development Environment:
	Using Properties:
	Programatica: “Programming as if Properties Matter”
	Extreme Programming
	“Extreme Formal Methods”
	Generating Evidence:
	Gathering Evidence:
	Using QuickCheck:
	Using QuickCheck with pfe:
	Using QuickCheck with pfe:
	Servers and Certificates:
	The Registry:
	Servers in pfe:
	Certificates in pfebrowser:
	Stronger Evidence:
	Combining Evidence:
	Validation and Combination:
	Integrating Evidence:
	Separation Fails!:
	Dealing with Change:
	Hashing to Detect Change:
	Using a Dependency Graph:
	Using a Dependency Graph:
	Using a Dependency Graph:
	Benefits of Hashing:
	Management Activities:
	Summary:

