
Automated soundness checking of a programming logic for Haskell

Richard B. Kieburtz

OGI School of Science & Engineering
Oregon Health & Science University

Beaverton, Oregon, USA

Abstract

P-logic is a verification logic for the programming lan-
guage Haskell. Inference rules are expressed in sequent cal-
culus for each of the term constructs of Haskell. Validating
soundness of these rules is an essential task. Most rules
of P-logic are polymorphic, independent of Haskell’s type
classes. The paper develops a parametricity principle for
predicates of P-logic, which justifies checking soundness of
polymorphic rules at a particular type instance. By imple-
menting the Haskell semantics with a meta-circular inter-
preter, automated model-checking has been used to validate
soundness of the polymorphic inference rules of P-logic.

1 Introduction

P-logic is a verification logic for the programming lan-
guage Haskell. Its term language is the set of Haskell terms
that are syntactically well-formed and well-typed in a con-
text of module, class, type and expression declarations.

As a verification logic, it is comprised of inference rules,
here expressed in sequent calculus style, that characterize
the functional behavior of Haskell terms. However, since
Haskell is not defined in terms ofP-logic, an immediate
question is: how can we be sure that the inferences made
in the logic are coherent with the abstract semantics that
actually defines Haskell? In other words, how do we know
thatP-logic is sound?

Generally, soundness of a logic is shown by exhibiting
a model for it, i.e. a non-trivial interpretation of the logic.
The need to provide models to assure sound logical reason-
ing about rich, programming calculi provided the original
motivation for developing denotational semantics.

P-logic is unusually interesting as a verification logic be-
cause it is able to express a critical properties of programs
in a non-strict language, such as whether a term in context
necessarily denotes a well-defined value. With the ability to
define predicates recursively, either finiteness or unbound-

edness of data structures is expressible inP-logic.

Given a standard model for Haskell, to show that it is
actually a model forP-logic we must prove that each of the
inference rules of the logic is valid for the model. More
specifically, a soundness proof of a rule consists in showing
that under every type-compatible assignment of values to
the free variables occurring in the rule, its consequence is
true of the model whenever all of its hypotheses are true.
Our use of the phrase “free variables” refers here to both
term and predicate variables.

The inference rules ofP-logic comprise acoreset, char-
acterizing the definitional and expression constructions of
Haskell, plus a set of algebraic laws for the interpreted op-
erators of arithmetic data types, monads and the derived op-
erators of certain classes. We are concerned here only with
the core set of rules. The rules in the core set, since they do
not attempt to axiomatize specific algebras, are polymor-
phic.

Since the core logic is polymorphic, it is reasonable to
expect a parametricity result to hold. We expect that if a
rule is valid when interpreted at any specific type, it must
be valid at all types. With such a result, which we prove
in Section 3, a soundness proof of an inference rule can be
based upon an interpretation of the rule at a single type,
which may be chosen to be finite. Checking the validity of
a rule in all interpretations in a finite type becomes a finite
model-checking problem.

In the remainder of the paper, the ideas sketched here
are developed more formally. In Section 2, we give a brief
introduction toP-logic and its semantics, which have been
more fully defined elsewhere [6]. The meta-theory of para-
metricity forP-logic is developed in Section 3, using logical
relations.

A meta-circular interpreter provides a denotational
model of Haskell [4] which we have used in automat-
ing model-checking of inference rules ofP-logic. Model-
checking is described in Section 4. Section 5 summarizes
conclusions and directions for future work.



2 A brief introduction to P-logic

P-logic is designed to express property assertions of
Haskell expressions, utilizing the context of a Haskell pro-
gram to provide bindings for free term variables that may
occur in an expression. The term language ofP-logic is
Haskell98. The formula language is a predicate calcu-
lus with interpreted equality, extended into a mu-calculus
which allows least and greatest fixed-point formulas to de-
fine predicates, and equipped with a modality for expression
evaluation.

The atomic propositional forms ofP-logic either assert
term equality,t1 === t2, or that a term has a property ex-
pressed as a unary predicate,t ::: P , or more generally,
that ak-ary predicate expresses a property ofk terms. The
symbol (:::) expresses a (unary) property assertion, in anal-
ogy to the symbol (::) that expresses a typing assertion in
Haskell. In this paper we shall consider only those formu-
las that express unary predicates, referring the reader to a
more complete definition of the logic [6] for the treatment
of multi-place predicate formulas, including equality.

Informally, we intend that an assertiont ::: P should be
true in a given context if evaluatingt by Haskell’s deno-
tational semantics results in a value that manifestly satisfies
the propertyP . But what if evaluation oft is not necessarily
demanded in the program context in which the assertion oc-
curs? Because of Haskell’s non-strict evaluation semantics,
two notions of satisfaction of a predicate are sensible.

We say that a predicate,P , is weaklysatisfied by an ex-
pressionM if the denotation ofM belongs to the set de-
fined by the interpretation ofP . It is stronglysatisfied if
in addition, the denotation ofM is non-bottom value. An
otherwise weak assertion context can be explicitly strength-
ened by prefixing the symbol ($) to a predicate formula. A
strengthened predicate can only be strongly satisfied.

2.1 Predicate formulas

There are two atomic predicates inP-logic

• Univ is the universal predicate satisfied by all terms,

• UnDef is the predicate of undefinedness, satisfied only
by terms which denote⊥.

There are five ways that compound predicate formulas
are formed inP-logic.

• The connectives of the underlying propositional logic
are “lifted” to work as connectives on predicates. For
example, the conjunction connective, (∧) is lifted to
a predicate connective by the definitionx ::: (P ∧
Q) =def (x ::: P ∧ x ::: Q).

• Constructors of datatypes declared in a Haskell pro-
gram text are implicitly “lifted” to act as predicate con-
structors inP-logic. Predicates formed in this way are
calledterm congruences. For example, in the context
of a formula, the list constructor combines two predi-
cates,P andQ, into a new predicate formula,(P : Q).
This formula is satisfied by a Haskell expression that
evaluates to a form(h : t) and whose component ex-
pressions weakly satisfy the assertionsh ::: P and
t ::: Q. The default mode of interpretation of the
component predicates is weak because the semantics
of the list constructor allows undefined values as its
arguments.

• The “arrow” predicate constructor is used to compose
formulas that express properties of function-typed ex-
pressions. A formulaP → Q is satisfied by a function
if when the function is applied to an argument that sat-
isfiesP , the resulting application satisfiesQ.

• A least or greatest fixpoint binder may bind a predicate
variable in a prefix of a predicate formula. Theµ andν
binders of the mu-calculus, but are written asLfp and
Gfp in formulas ofP-logic.

• The propositional connectives ”∧” and ”∨” are lifted
to predicate constructors, with meanings defined by

t ::: (P ∧ Q) ≡ t ::: P ∧ t ::: Q

t ::: (P ∨ Q) ≡ t ::: P ∨ t ::: Q

2.2 The modality of Haskell terms

When used in conjunction, lifted connectives, term con-
gruences and fixpoint binders allow detailed properties of
Haskell expressions to be formulated inP-logic. For exam-
ple, a unary predicate asserting that an expression of type
List adenotes a finite list can be defined as

property Finite list = Lfp X. ([ ] ∨ (Univ : $X))

The body of the formulaFinite list asserts the disjunction
of two constructor formulas. The first, a lifting of the data
constructor[ ] , is satisfied by an expression denoting the
empty list. The second disjunct is satisfied by a term denot-
ing a constructed list whose tail is non-bottom and satisfies
theFinite list property.

To characterize lists for which every listed element sat-
isfies a common property,Q, we can declare

property All eltsQ =def GfpX.([ ] ∨ (Q : X))

in which a predicate,Q, is a parameter of the declaration.
The propertyAll elts includes both finite and infinite

lists. This property definition differs from that ofFinite list
in two important details: (1) the binding operator in the for-
mula isGfp rather thanLfp and (2) the predicate variable,
X, is unstrengthened.

2



2.3 Inference rules inP-logic

Rules inP-logic are shown in Figure 1 in a sequent calcu-
lus style1. Unlike a natural deduction style, in which com-
plementary introduction and elimination rules are given for
each construction of the term language, there are only intro-
duction rules in sequent calculus style. However, a property
introduction may occur either on the right of the turnstile
symbol, as a conclusion, or to the left, as an assumption.
Assumption introductions play a similar role in the sequent
calculus as do elimination rules in natural deduction style.
The sequent calculus is well suited to a goal-directed veri-
fication logic, as each rule specifies verification conditions
for a property matching its consequent.

2.3.1 Fixed-point properties of a recursive function
definition

Typically, the properties one wishes to express of terms that
arise from recursive definitions in Haskell can be charac-
terized with least fixed-point (l.f.p.) or greatest fixed-point
(g.f.p.) predicates, which are definable in the mu-calculus.
A predicate variable bound in the prefix of a fixed-point for-
mula by eitherLfp or Gfp is in scope over the entire for-
mula2.

A formula, H, is admissiblefor fixed-point iteration if
it contains only positive occurrences of the free predicate
variable that is to be bound by the fixed-point iterator.

2.3.2 Least fixed-point properties

To prove an l.f.p. property of a recursively defined function,
the function definition may be partitioned into base cases
and induction cases. For simplicity, we shall limit the num-
ber of cases to just two, which are characterized bysepara-
tion predicatesP1 andP2, respectively. The intended use
of separation predicates is to partition the argument domain
into one subset on which the function’s definition yields a
result without recursive invocation and a second subset on
which the definition must invoke recursion to return a result.

In rule (12) for l.f.p. properties,X is a predicate variable
that may occur inH but does not occur inP1 or P2 and
X 6∈ FV(Γ).

The first antecedent clause of (12) provides a base case
for induction. The assertionm ::: Univ in the context of
the first antecedent ensures that its conclusion cannot de-
pend upon any specific property assumed of the term vari-
ablem. This antecedent clause asserts that whenever term
tm is applied to an argument restricted by propertyP1, the

1The set of rules given in Figure 1 is incomplete. In particular, no
structural rules to justify weaker conclusions or stronger assumptions are
shown.

2In P-logic, we use the identifiersLfp andGfp as substitutes for the
greek lettersµ andν used in mathematical treatments of the mu-calculus.

application can be proved to satisfy the predicate formula
H without assuming a property of the function to hold at a
recursive application.

The second antecedent clause of (12) provides an induc-
tion step. The inductive assumption asserts the property
H of an application oftm to an argument restricted by the
propertyP2. The term variablem may occur intm and the
predicate variableX may occur inH.

The consequent of this rule asserts an l.f.p. property
of a recursively defined functionm when its definition,
m === tm, is added to the context. The constraint,P ⇒
P1 ∨ P2, is necessary to ensure soundness of the rule.
For completeness, we usually want the additional condition,
P1 ∨ P2 ⇒ P .

2.3.3 Greatest fixed-point properties

To prove a g.f.p. property stated with term congruences,
we make use of the fact that Haskell data constructors
are uniquely invertible. Thus a constructor pattern pro-
vides, implicitly, deconstruction functions that project out
the component subterms of a constructed term matching the
pattern. The semantics of pattern matching in Haskell relies
upon this isomorphism between a constructed term and its
components. So do the term congruences ofP-logic.

Rule (13) concludes a fixed-point property of a
recursively-defined term. The predicate variableX may
occur in H but not in P and X 6∈ FV(Γ). The second
antecedent clause asserts that when antm strongly satis-
fiesH, the term variablem satisfies propertyX. Since the
predicate in the conclusion of the consequent is defined by
a g.f.p. formula, the base case for induction is the first an-
tecedent,Γ ` tm ::: $H[Univ/X].

2.4 Semantics ofP-logic

The semantic models we shall consider for Haskell are
based upon the universe of typed ideals of MacQueen,
Plotkin and Sethi [7, 1]. In an ideal model, the elements
of a c.p.o. semantic domain constitute a single, untyped
universe. Ideals are downward-closed sets which contain
the limits of their directed subsets. Ideals have non-empty
intersections; in particular, the bottom element of a pointed,
c.p.o. universe belongs to each of its ideals. The types of
Haskell expressions are naturally modeled as ideals, since
every Haskell type has a bottom element. The limit points
of chains in an ideal that models a type represent the “val-
ues” of the type. Not all ideals are associated with types,
however.

Ideals also provide satisfactory models for the admissi-
ble predicates ofP-logic, which refine the types of Haskell.
As we shall see,P-logic also specifies a strong modality for
predicates, in which the interpretation of the predicate “cuts

3



Γ ` M ::: P Γ ` N ::: Q

Γ ` M, N ::: $(P, Q)
(1)

M ::: P ` ∆

(M, N) ::: (P, Univ) ` ∆
(2)

N ::: Q ` ∆

(M, N) ::: (Univ, Q) ` ∆
(3)

Γ ` M ::: $(P, Univ)

Γ ` fst M ::: P

Γ ` M ::: $(Univ, Q)

Γ ` snd M ::: Q
(4)

Γ, x ::: P ` M ::: Q

Γ ` (λx -> M) ::: $(P → Q)
(5)

Γ ` N ::: P Γ, M N ::: Q ` ∆

Γ, M ::: $(P → Q) ` ∆
(6)

Γ ` M ::: $(P → Q) Γ ` N ::: P

Γ ` M N ::: Q
(7)

M ::: P → Q ` ∆

x ::: P, M x ::: Q ` ∆
(variablex 6∈ FV(M)) (8)

Γ ` M1 ::: P1 · · · Γ ` Mk ::: Pk

Γ ` C(k) M1. . .Mk ::: $C(k) P1. . . Pk
(k ≥ 0) (9)

Mi ::: Pi ` ∆

C(k) M1. . .Mi. . .Mk ::: C(k) Univ. . .Pi. . .Univ ` ∆
(10)

Γ ` M1 ::: P1 . . . Γ ` Mj ::: $Pj . . . Γ ` Mk ::: Pk

Γ ` C(k) M1. . .Mj . . .Mk ::: $C(k) P1. . .$Pj . . .Pk
(11)

(1 ≤ j ≤ k)

Γ, m ::: Univ ` tm ::: $(P1 → H)
Γ, m ::: $(P → X) ` tm ::: $(P2 → H)

Γ, m === tm ` m ::: $(P → LfpX •H)
wherem 6∈ FV(Γ) andP ⇒ P1 ∨ P2

(12)

Γ ` tm ::: $H[Univ/X] Γ, tm ::: $H ` m ::: X

Γ, m === tm ` m ::: Gfp X •H
(13)

Figure 1. Inference rules of P-logic

off” the bottom element of its ideal model. A strong predi-
cate is satisfied only by expressions whose denotation is not
⊥.

2.5 A semantic interpretation of P-logic

LetA[| |] :: (Term× Type) → Env→ A be a meaning
function that maps every well-typed Haskell expression to
its denotation in a domainA, whereEnv = Var× Type→
A. When the domain of interpretation is unambiguous, as
when we are only talking about a single domain, the domain
identifier will be omitted.

We use the following notation to distinguish terms and
formulas from their meanings:

Adτe⊥ is the ideal containing interpretations of terms
of typeτ

Adτe is the set of interpretations of terms of typeτ,
excluding⊥A (i.e., Adτe = Adτe⊥\ {⊥A})

The meaning of a term constant at a type,τ , is

A[|C, τ |]η = CA,τ ∈ Adτe⊥

Formulas will be interpreted as characteristic predicates
of sets (posets) in an abstract domain for Haskell’s seman-
tics. The meaning of a predicate formula,P , at a type
Predτ , is denoted as

A[|P |]Pred τ ⊆ Adτe⊥

The interpretation of a strong predicate is

A[|$P |]Pred τ = A[|P |]Pred τ \ {⊥A}

2.5.1 Universal predicates

The predicate constantsUniv andUnDef represent the uni-
versal predicate and the unsatisfiable predicate in each type.
The interpretations of these predicates are:

[|Univ|]Pred τ = dτe⊥ [|UnDef|]Pred τ = {⊥τ}
[|$Univ|]Pred τ = dτe [|$UnDef|]Pred τ = { }

2.5.2 Term congruence predicates

The meaning of a term congruence predicate formed with a
k-ary constructor,C ∈ Στ

k, is

((C, (τ1, . . . , τk)) ∈ Στ
k) ⇒ [|C P1 · · ·Pk|]Pred τ =

{Cdτe t1 · · · tk | t1 ∈ [|P1|]Pred τ1 ∧ . . .
∧ tk ∈ [|Pk|]Pred τk} ∪ {⊥}

The above interpretation is for a non-strict datatype con-
structor.

2.5.3 Arrow predicates

An arrow predicate characterizes a property of a function-
typed term. We can read a proposition such asM ::: P →
Q as the assertion “whenM is applied to an argument that
has propertyP , the application has propertyQ”. We call
the subformula to the left of the arrow the domain predicate
and that to its right the range predicate.

[|P → Q|]Pred τ1→τ2 =
{f ∈ dτ1e⊥ → dτ2e⊥ | ∀x ∈ [|P |]Pred τ1 • f x ∈ [|Q|]Pred τ2}
∪ {⊥}

where the function space is that of continuous functions
from dτ1e⊥ to dτ2e⊥.

4



2.5.4 Predicate conjunction and disjunction

[|P1 ∧ P2|]Pred τ = [|P1|]Pred τ
⋂

[|P2|]Pred τ

[|P1 ∨ P2|]Pred τ = [|P1|]Pred τ
⋃

[|P2|]Pred τ

2.5.5 Fixed-point formulas

The interpretations of least (greatest) fixed-point formulas
are given in terms of infinite unions (intersections) of inter-
pretations of finitely iterated syntactic substitutions of the
matrix in place of the recursion variable,X. The zeroth
iteration is specified by definition to beUnDef in the inter-
pretation of an l.f.p. formula, andUniv in the interpretation
of a g.f.p. formula. Thus the interpretations are dual.

[|LfpX. H|]Pred τ =
⋃∞

j=0 [|Hj |]Pred τ

where H0 = UnDef
Hj+1 = H[Hj/X]

[|GfpX. H|]Pred τ =
⋂∞

j=0 [|Hj |]Pred τ

where H0 = Univ
Hj+1 = H[Hj/X]

3 Logical relations and parametricity

Logical relations were introduced into programming lan-
guage theory by Mitchell and Meyer [9] to formalize prop-
erties of the second-order lambda calculus. They have since
been used by many authors to derive parametricity proper-
ties of polymorphic functions as well as representation in-
dependence [11, 3, 2]. Intuitively, a logical relation is a
type-indexed family of relations between (possibly differ-
ent) semantic representations which preserves the algebraic
behavior induced by modeling the calculus. Here, we con-
sider logical relations for a calculus with the type system of
Haskell, in which type variables may universally quantified,
but only in a global context.

3.1 Logical relations over domains

Logical relations were first developed for strongly nor-
malizing applicative structures that provide semantics for
typed lambda calculi without recursion. Logical relation
can be extended to full, continuous hierarchies of c.p.o.’s
that provide semantics for lambda-fix calculi. These rela-
tions must respect the partial order structure of domains.

Polymorphism is implied by universal quantification
over a type variable. The meaning of a polymorphic
expression is the intersection of its meanings taken at
all instances of the quantified type variable,[|M |]∀α.σ =

⋂
τ ::type[|M |]σ[τ/α]. Clearly, the meaning of every polymor-

phic expression includes⊥, as it belongs to the meaning of
the expression at every specific type.

Parametricity is consequent to the interpretation of type
quantification. At a polymorphic type,

R∀α.σ =
⋂

τ ::type

Rσ[τ/α]

This interpretation has the consequence that meanings re-
lated byR∀α.σ cannot depend upon constants of any partic-
ular type that might substitute forα.
Corollary 3.1: SupposeA andB are pointed c.p.o. do-
mains and letR ⊆ A × B be logical. For every pointed
type,σ,Rσ(⊥A,⊥B).

3.2 Models forP-logic

A model for P-logic extends a Haskell model by pro-
viding interpretations for predicate constants and predicate
constructors. We wish the meanings of predicates to refine
the meanings of types and furthermore, to give meanings to
predicates defined as least or greatest fixed points of predi-
cate constructors. The meaning of aPredσ-typed predicate
in P-logic can be defined as a characteristic predicate over
the domain that interprets the corresponding Haskell term
type,σ. As was mentioned briefly in Section 2, ideal mod-
els are also appropriate for predicates.

A type-indexed family of unary predicates,P, over an
applicative domain of c.p.o.s,A, isdirected-completeif it is
closed under limits of directed sets, at every type;pointedif
Pσ(⊥) at every type,σ. Directed-complete (resp. pointed)
predicates are closed with respect to the operations of pred-
icate disjunction and predicate conjunction. A predicate ar-
row, P → Q, constructed from directed complete predi-
cates,P andQ, is also directed complete, as it is comprised
of the continuous functions from a domain satisfyingP to a
domain that satisfiesQ. Continuous functions are just those
which preserve order and respect limits of directed sets.

Definition3.1: A (unary) predicate formula,P is logical iff
it is directed-complete and downward-closed.

A logical predicate is pointed at every pointed type,
which forP-logic, is every type.

3.2.1 Polymorphic predicates

Notice that the type of a predicate is contravariant in the
type of expressions that may satisfy it; i.e.Predτ = τ →
Prop. This has an important consequence; the meaning of
a polymorphic predicate is the union of its meanings at all
type instances:[|P |]∀α.Pred σ =

⋃
τ ::type[|P |]Pred σ[τ/α].

For example, the (polymorphic) meaning of the universal
predicate,Univ, is [|Univ|]∀α.Pred α =

⋃
τ ::type[|Univ|]Pred τ =⋃

τ ::typedτe⊥, which is the entire semantic domain.

5



3.2.2 The strong modality

A P-logic predicate in the $-modality satisfies the defini-
tion of a logical predicate except that it is (specifically)
unpointed. That is, its semantic interpretation is directed-
complete and downward closed except that the bottom ele-
ment of the domain in its type is removed from the interpre-
tation. We say of such a predicate that it isstrongly logical.

3.3 Predicate logical relations and the representa-
tion independence lemma

The Basic Lemma for logical relations establishes
representation-independence of term reduction. To estab-
lish representation independence of predicate satisfaction in
P-logic, it will suffice to show that observations restricted
by predicate satisfaction are logical, i.e. that they satisfy
the conditions of a logical relation.

More specifically, for a class of admissible predicates3,
two equivalently typed terms are related modulo observa-
tion by a predicate formula, in related term and predicate
environments, if satisfaction of the proposition in any one
model is logically equivalent to satisfaction in any other
model.

Predicate formulas characterize the observations on
which a relation is founded. A predicate variable occurring
in the formula may be instantiated to any logical or strongly
logical predicate of the type assigned to the variable, just
as term variables may be instantiated by type-conforming
valuations.

Since the strong modality of a predicate inP-logic re-
stricts the satisfying interpretations of a term to non-bottom
elements of the semantic domain in its type, it is possible
to express relations that cannot be expressed by relations
between unpredicated terms. Such relations lead to “free
theorems”; for example, that there is a unique, non-bottom
member of the type∀α •α → α. Using only relations be-
tween unpredicated terms, the strongest provable result for
this type is that it contains only two members, namely the
identity function and⊥.

3.4 Logical relations extend to models of predicate
formulas

A logical relation between domains,R ⊆ A×B, induces
a relation between powersets of the domains,RPred ⊆
℘(A) × ℘(B). This enables us to relate models of predi-
cate formulas.

Definition 3.2:
If R ⊆ A × B is a logical relation, predicatesP :: Predσ

3The formulas constructed inductively from the formation rules given
in Section 2 are admissible, as no predicate variable occurs in a negated
position.

andQ :: Pred σ are related byRPred σ ⊆ ℘(A) × ℘(B)
iff for all terms s, t :: σ, Rσ(A[|s|],B[|t|]) ⇒ (A[|s|]σ ∈
A[|P |]Pred σ ⇔ B[|t|]σ ∈ B[|Q|]Pred σ).

Lemma 3.1: Let σ, σ1, . . . , σn, τ be pointed types and
supposeR ⊆ A× B is logical. Then

• RPred σ(A[|Univ|],B[|Univ|])

• RPred σ(A[|UnDef|],B[|UnDef|])

• RPred σ(A[|$P |],B[|$Q|]) ⇔ RPred σ(A[|P |],B[|Q|])

• RPred σ(A[|P1|],B[|P2|]) ∧
RPred (σ→τ)(A[|P1 → Q1|], B[|P2 → Q2|]) ⇒
RPred τ (A[|Q1|],B[|Q2|])

• RPred σ(A[|CnP1 . . . Pn|],B[|CnQ1 . . . Qn|]) ⇔
∀i ∈ 1 .. n •RPred σi(A[|Pi|], B[|Qi|])

whereCn :: σ1 × · · · × σn → σ is ann-place constructor

andPi =
{

$Pi if C(n) is strict in itsith argument
Pi otherwise

andQi is defined similarly

• RPred σ(A[|P1|],B[|P2|])∧RPred σ(A[|Q1|], B[|Q2|]) ⇒
RPred σ(A[|P1 ∧ Q1|],B[|P2 ∧ Q2|])

• RPred σ(A[|P1|],B[|P2|])∨RPred σ(A[|Q1|], B[|Q2|]) ⇒
RPred σ(A[|P1 ∨ Q1|],B[|P2 ∨ Q2|])

Proof: The proof is by induction on the structure of non-
recursive predicates. (See Appendix).

Corollary 3.1: Type generalization of relations between
predicates.

R∀α.Pred σ(A[|P |],B[|Q|]) =⋃
τ ::typeRPred σ[τ/α](A[|P |],B[|Q|])

3.4.1 Predicate environments

A predicate environment maps predicate variables to their
meanings in a model. We writeLP(A) to designate the class
of logical and strongly logical predicates over a semantic
domain,A. To express that predicate environmentsπa ::
PredVars→ LP(A) andπb :: PredVars→ LP(B) respect a
type environment,Γ, we writeπa, πb |= Γ.

Definition 3.3: RΓ(πa, πb) ≡
∀P ∈ PredVars•RΓ(πa(P ), πb(P )), whereπa, πb |= Γ

Relations between predicates can now be ex-
tended to predicate formulas in which there may be
free occurrences of predicate variables. We write
RPred σ(A[|P |]πa, B[|P |]πb) to express such a relationship.

6



3.4.2 Extending logical relations to recursively speci-
fied predicates

In a pointed applicative c.p.o. structure,A, the semantics of
a least fixed-point predicate formula is given by

A[|Lfp ξ •H|]σ =
∞⋃

i=0

A[|Hi[UnDef]|]σ

whereH0[P ] = P
Hi+1[P ] = H[Hi[P ]/ξ].

The semantics of a greatest fixed-point formula is:

A[|Gfp ξ •H|]σ =
∞⋂

i=0

A[|Hi[Univ]|]σ

Lemma 3.2Letσ be a pointed type and supposeR ⊆ A×B
is logical. Then

RPred σ(A[|Lfp ξ •H|], B[|Lfp ξ •H|]) and
RPred σ(A[|Gfp ξ •H|], B[|Lfp ξ •H|])
iff ∃P :: Predσ •RPred σ(A[|P |], B[|P |]) ⇒

RPred σ(A[|H[P/ξ]|], B[|H[P/ξ]|])

Proof: (See Appendix).

3.4.3 Parametricity for polymorphic predicates

The interpretation of predicates under type generalization
yields a parametricity property that is dual to the property
of parametricity for terms. Under type generalization, the
meaning of a term can depend on no semantic element that
is particular to any instance of a generalized type variable.
This restricts the meanings assigned to terms of a polymor-
phic type, yielding unique elements in a set interpretation
and unique upper bounds in a c.p.o. interpretation.

Dually, the meaning of a predicate can impose no con-
straint that is particular to an instance of a generalized type
variable. Consequently, two predicates are related at a gen-
eralized type iff they are related at any particular instance of
the type.

Theorem 3.1:Parametricity for predicates.
LetR ⊆ A×B be a logical relation. Then the following

are logically equivalent conditions for the induced relation
of predicatesP andQ at a generalized type:

R∀α.Pred σ(A[|P |],B[|Q|]) and
∃τ :: type•RPred σ[τ/α](A[|P |],B[|Q|])

Proof: (See Appendix.)
2

A type-parametric property can be observed at any type
instance of the polymorphic predicate that encodes the

property. The predicate parametricity theorem formalizes
this intuition. For example, the polymorphic predicate
DefinedHead= ($Univ : Univ) :: ∀α.Pred [α] is satis-
fied (in any model) at the type[Int] by the meaning of the
term [1,2,3] and at the type[Char] by the meaning of the
term (’A’ : undefined).

3.4.4 Satisfaction of a predicate formula is model-
independent

A judgment that a typed term satisfies a predicate can now
be given a semantic interpretation. In a model,A, with
value environment,η, and predicate environment,π, the
meaning of the judgment formΓ � M :: σ ::: P is

A[|Γ � M :: σ ::: P |]η π =
A[|Γ � M :: σ|]η ∈ A[|Γ � P :: Predσ|]π

We shall only be interested in type-coherent interpretations,
for whichη π |= Γ.

Lemma 3.3: Satisfaction of property assertions is model-
independent.
Supposeηa andηb are related valuation assignments, type-
compatible with the type assignmentΓ, and supposeπa and
πb are related predicate environments, also compatible with
Γ. Then

(Rσ(A[|Γ � M :: σ|]ηa,B[|Γ � N :: σ|]ηb) ∧
RPred σ(A[|Γ � P :: Predσ|]πa,A[|Γ � Q :: Predσ|]πb)) ⇒

(A[|Γ � M :: σ ::: P |]ηa πa ⇔ B[|Γ � N :: σ ::: Q|]ηb πb)

Proof: The lemma is a direct consequence of the Basic
Lemma for models and its extension to predicates, Lemmas
3.1 and 3.2, applied to the meaning of a judgment form.

3.4.5 Parametricity and polymorphic property asser-
tions

There is also a parametricity result for polymorphic prop-
erty assertions, which is a consequence of Corollary 3.1.

Corollary 3.2: Suppose∀α :: type•M ::: P is an asser-
tion well-typed under a typing contextΓ and closed under a
type-compatible value assignmentη. Then

[|Γ � M ::: P |]η ≡
∃τ :: type• [|Γ[τ/α] � M |]η ∈ [|Γ[τ/α] � P |]

Corollary 3:2 can be extended to characterize validity of
an assertion in which there occur free term variables not
bound by the valuation assignment and in which free predi-
cate variables may occur in the predicate,P .

Definition 3.4: Validity of a polymorphic property asser-
tion.

7



Suppose an assertion∀α :: type•M ::: P is well-typed
under a typing contextΓ but is not necessarily closed un-
der a fixed value assignmentη, and that the predicate,P ,
may contain free predicate variables. The set of predicate
variables that occur free inP is denoted byFV(P ). Such
an assertion isvalid in a typing contextΓ and valuation as-
signment,η iff

∃τ :: type•
∀η′ :: FV(M) \ Dom(η) → [| . |]Γ •
∀ π :: FV(P ) → ℘([| . |]Γ) •

η ⊕ η′, π |= Γ ⇒
[|Γ[τ/α] � M |]η ⊕ η′ ∈ [|Γ[τ/α] � P |]π

2

Validity of a polymorphically typed assertion can be es-
tablished at any type instance, but requires the assertion to
be satisfied under every valuation and predicate assignment
compatible with that type instance. This requirement pre-
cludes the validity of an asserted property that is specific to
a type substituted for the quantified type variable.

Theorem 3.2:Validity of polymorphic assertions.
If a polymorphic property assertion∀α :: type•M ::: P ,

well-typed in a typing context,Γ, is valid at any specific
type instance,Γ[τ/α], then it is valid at every type instance.

Proof: Immediate from Definition 3.4 and Corollary 3.1.

3.5 Validity of inference rules

A rule asserts a propositional implication of a conse-
quent judgment from zero or more antecedent judgment
forms. A rule issoundif the propositional implication in
terms of which it is formulated isvalid for a model.

An inference rule typically contains both free term vari-
ables and free predicate variables, as a rule formulates how
properties of component terms are propagated to compos-
ite terms and vice-versa. Furthermore, rules of the core
of P-logic are polymorphic, as the core logic characterizes
just the applicative structures and the free term algebras of
Haskell. Theorem 3.1 tells us that a polymorphic property
can be observed at any type instance of a quantified type.

Corollary 3.2: The validity of a polymorphic rule ofP-
logic can be observed at any type instance.

4 Checking soundness of rules ofP-logic

To observe the soundness of a polymorphic rule, we can
pick a type instance and for the chosen type, check that the
propositional implication of the rule’s conclusion from its
hypotheses is satisfied under every type-conforming value
assignment for term variables that occur in the rule and ev-
ery type-conforming predicate assignment for its predicate

variables. This provides a necessary and sufficient condi-
tion to determine that a rule is coherent with the semantics
interpretation given by the model. For those rules in which
the conclusion asserts a simple property (i.e. a property that
does not require a fixed-point), choosing a finite type in-
stance renders soundness as a finite model-checking prob-
lem.

For rules that concludeLfp or Gfp properties, finite
model checking alone cannot assure soundness. However,
Lemma 3.2 provides the meta-theory on which soundness of
a conclusion involving a fixed-point property rests. It gives
sufficient conditions for soundness of aLfp or a Gfp rule,
expressed in terms of predicates that are not recursive. The
conditions needed to discharge the hypotheses of Lemma
3.2 can indeed be checked with a finite model.

The elements of a model form a type-indexed family
of domains, which will guide the choice of specific, finite
models for checking soundness of rules. We distinguish
properties that can be expressed in terms of the free types
of Haskell from those that rely upon an underlying algebra
of specific types, or type classes. Rules ofP-logic express
only the properties of free types. For most properties of
non-free algebras,P-logic relies upondecision procedures
to determine equivalence of terms modulo a particular al-
gebraic theory, or a combination of such theories. Deci-
sion procedures and their compositions must be validated
by means external toP-logic.

4.1 Finite models for Haskell types

In this section, we consider the type constructions of
Haskell, to show how each can be represented by a finite
type to model the rules ofP-logic. The elements of a se-
mantic domain are taken to be either the explicit bottom
element,⊥, or constants of the type, or pairs of elements,
or fixed-length lists of elements.

An element of a datatype is modeled by pairing a con-
stant, which represents the data constructor, with a list of
elements representing the arguments of a constructor appli-
cation. An element of a (finite) function type is modeled by
a list of pairs, representing a monotonic function by a trace.

The elements ofBool are⊥, TrueandFalse.

The trivial type,Void, has two elements,⊥ and ().

A product type, (τ1, τ2), has the elements⊥ and
{(a, b) | a ∈ dτ1e⊥ andb ∈ dτ2e⊥}

An arrow type,τ1 → τ2, has as its elements⊥ and the
traces of all monotone functions fromτ1 to τ2.

We choose a representative datatypedata Prelist αβ =
Nil | Consα β. Elements ofPrelist τ1 τ2 are⊥,
(Nil, [ ]) and members of the set{(Cons, [a b]) | a ∈
dτ1e⊥ andb ∈ dτ2e⊥}.

8



Notice that we have not chosen a recursive datatype con-
structor, such asList. It is not necessary to choose a re-
cursively defined type, as no rule ofP-logic depends upon
implicit fixed-points. In fact, the only rules in which there
occur terms of datatypes are (9), (10) and (11) in which
there are no nested data constructors.

In checking any rule, the principle followed is to choose
the least complex type possible to instantiate any type vari-
able of a parametrically polymorphic typed term. Thus, for
instance, to check rule (5) for abstraction introduction, we
would choose the type() → () to model an arrow type.

4.2 Modeling predicates

When a type instance of the term (or terms) in a rule has
been chosen, the typing of every predicate in the rule is also
determined. To check soundness of the rule, we must simu-
late all type-compatible predicate assignments to the predi-
cate variables that occur in the rule. The predicate interpre-
tations at a finite type are finite constructions from the predi-
cate constructors that are defined for the type. At every type
we have the predicatesUniv, $Univ, UnDef and$UnDef.
Notice however, that no information is gotten from the as-
signment ofUniv, as this predicate contains every element
of the corresponding type domain, or from the assignment
of $UnDef, as it is unsatisfied by any domain element.

In addition to the interpretations of$Univ andUnDef,
additional predicate interpretations are included in an
assignment at a particular type. At a product type,
Pred (τ1, τ2), we add the interpretations of(P ::
Pred τ1, Q :: Pred τ2), whereP and Q are fresh predi-
cate variables. For a predicate of an arrow type,τ1 → τ2,
the interpretations ofP → Q, whereP :: Pred τ1 and
Q :: Predτ2 are added. For datatypes,

Bool adds the interpretations ofTrue, False, $True and
$False;

Prelist adds the interpretations ofNil, Cons P Q, $Nil and
$Cons P Q, whereP andQ are predicate variables.

4.3 Model checking of inference rules

4.3.1 A machine-interpreted model for Haskell

An abstract semantics for Haskell, coded in Haskell, pro-
vides a meta-circular interpreter [4]. This interpreter, while
not implementing the IO monad or garbage collection for
heap storage, provides an executable model that is simple
enough to be certified by inspection as a faithful interpreta-
tion of the language definition. With two exceptions, this in-
terpreter meets our need for a model against which to check
the soundness of the polymorphic rules ofP-logic. These
exceptions are:

• the bottom element in the semantics domain is inter-
preted by the Haskell constantundefined, whose eval-
uation aborts execution of the interpreter;

• function values are interpreted by functions pro-
grammed in Haskell, i.e. by explicit abstraction ex-
pressions.

A consequence of these design choices in the interpreter
is that it aborts execution whenever it calculates a bottom el-
ement in the domain—which is unacceptable for modeling
predicate satisfaction inP-logic. Therefore, the semantics
interpreter of [4] has been modified. Domain elements are
represented in the following type:

data V
= Void --- value of type Void
| Tagged Name [V] --- data structures
| TV [V] --- tuple values
| FT [(V,V)] --- trace of a function
| Bottom --- the bottom element

Function application is modeled using the Haskell library
function lookup on the trace representation of a finite
function.

app :: V -> V -> V --- Application
app (FT trace_elements) x =

case lookup x trace_elements of
Nothing -> error ()
Just r -> r

Using these representation types, it is straightforward to
model the domain elements of a finite Haskell type. A do-
main is calculated by the semantics representation function,
Rep:: type→ V. For instance,

Rep(Prelist Void Void) =
{Bottom,
Tagged “Nil” [] ,
Tagged “Cons”[ Bottom,Bottom] ,
Tagged “Cons”[ Bottom,Void] ,
Tagged “Cons”[ Void,Bottom] ,
Tagged “Cons”[ Void,Void] }

A monotonic, finite function space of typea → b is calcu-
lated algorithmically as the set of all monotonic traces from
Rep ato Rep b.

4.3.2 Automated model checking

An initial step in model-checking a polymorphic rule is the
choice of a type instance, justified by Corollary 3.2. In-
stantiating each universally quantified type variable at the
type Void meets this requirement. For rules (9) and (10),
we choose the typePrelist Void Voidand for rule (11) we
choose a variant ofPrelist in which the constructorConsis
strict in its first argument.

9



A valuation assignment for the free term variables occur-
ring in a rule simply binds each variable to an element of the
type domain which corresponds to the type of the variable.
Universal quantification over valuation assignments is real-
ized by iterating through all possible value assignments, for
each variable independently, for the finite typing at which
the rule is to be checked.

Similarly, a predicate assignment binds each predicate
variable that occurs free in a rule to a subset of the type
domain to which it corresponds. Quantification over pred-
icate assignments is realized by iterating over all possible
predicate assignments.

At each valuation and each predicate assignment to the
free variables occurring in a rule, the truth of the proposi-
tional implication realized by that particular instance of the
rule is checked. A proposed rule is sound if all such checks
succeed, at the selected type; unsound if any such instance
of the rule is false.

For example, the polymorphic rule (6)

(ArrowLeft)
Γ ` N ::: P M N ::: Q ` ∆

Γ, M ::: $(P → Q) ` ∆

can be checked under the typing assignmentN ::
Void, M :: Void→ Void, P, Q :: Pred Void. For each par-
ticular valuation assignment and predicate assignment, we
calculate from the antecedent clauses of the rule the weakest
context assumption,Γ, and the strongest entailment,∆, for
which all antecedents are true. Then, the truth of the con-
sequent is checked, relative to the calculated context and
entailment, using the semantics model to evaluate Haskell
terms.

In checking the rule (ArrowLeft), the context calculated
from the antecedents provides a binding for a term (the vari-
able,N ) to which the term variableM in the conclusion
can be applied to produce a proposition that logically im-
plies the previously calculated entailment. This succeeds
under each valuation and predicate assignment for which
the antecedents of the rule could be validated; thus the rule
is deemed sound.

However, when the hypothesis in the consequent of the
rule is weakened, as in

(Unsound)
Γ ` N ::: P M N ::: Q ` ∆

Γ, M ::: (P → Q) ` ∆

the rule is found to be false under the valuation assign-
ment [(N, Void), (M, Bottom)] and predicate assignment
[P = Univ, Q = $Void]. Under these assignments,
we calculate from the antecedents a weakest context con-
straint(N, Void) ∈ Γ and a strongest entailment constraint
(M N, Void) ∈ ∆. These constraints are not both satis-
fiable by the consequent, under the semantics of applica-
tion. Thus, had the modified rule been proposed as a rule
of P-logic, it would have been found unsound by automated
model checking and rejected.

5 Conclusions

We have shown that the problem of proving soundness
for polymorphically typed inference rules in a modal, mu-
calculus can be reduced to finite model-checking. ForP-
logic, which is a new, verification logic for Haskell, sound-
ness is not an obvious property of proposed inference rules,
thus an automated technique to check soundness makes an
important contribution.

Further development ofP-logic will include embedding
decision procedures for decidable cases of disjoint alge-
braic theories associated with the class hierarchies of the
Haskell type system, such as integer and rational arithmetic,
booleans, and an algebra of lists.

AcknowledgementsThe effort to proveP-logic sound was
encourged by the entire Programatica team, but especially
by Jim Hook. The author is also indebted to Bill Harrison
for critical reading and comments on earlier drafts.

References

[1] M. Abadi, B. Pierce, and G. Plotkin. Faithful ideal models
for recursive polymorphic types. InProceedings of Fourth
Annual Symposium on Logic in Computer Science, pages
216–225. IEEE Computer Society Press, June 1989.

[2] P. J. de Bruin. Inductive types in programming languages.
PhD thesis, University of Groningen, 1995.

[3] M. M. Fokkinga. Law and Order in Algorithmics. PhD
thesis, University of Twente, Twente, The Netherlands, Feb.
1992.

[4] W. Harrison, T. Sheard, and J. Hook. Fine control of demand
in Haskell. InSixth International Conference on the Math-
ematics of Program Construction, volume 2386 ofLecture
Notes in Computer Science, pages 68–93. Springer Verlag,
July 2002.

[5] F. Honsell and D. Sannella. Pre-logical relations. In
Computer Science Logic, CSL’99, volume 1683 ofLecture
Notes in Computer Science, pages 546–561. Springer Ver-
lag, 1999.

[6] R. B. Kieburtz. P-logic: Property verification for Haskell
programs. 2002.

[7] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model
for recursive polymorphic types.Information and Control,
71(1/2):95–130, Oct. 1986.

[8] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[9] J. C. Mitchell and A. R. Meyer. Second-order logical rela-
tions. InLogics of Programs, volume 193 ofLecture Notes
in Computer Science, pages 225–236. Springer Verlag, June
1985.

[10] J. C. Reynolds. Types, abstraction and parametric poly-
morphism. InInformation Processing 83, pages 513–523.
North-Holland, Amsterdam, 1983.

[11] P. Wadler. Theorems for free! InProc. of 4th ACM Conf.
on Functional Programming Languages and Computer Ar-
chitecture, pages 347–359. ACM Press, Sept. 1989.

10



Appendix: Proofs omitted in the text :
Definition A.1: Logical relations over pointed c.p.o. do-
mains.
Let A andB be λ→,×,fix domains for a signature,Σ, that
includes polymorphic operators{Proj1, Proj2, App, Fix}
and a type-indexed family of constants,Σσ.

A logical relationover full continuous hierarchiesA andB
is a family of relations indexed by type expressions over a
signatureΣ such that:

1. Rσ ⊆ Aσ ×Bσ for each typeσ

2. Rσ(ConstA(c), ConstB(c)) for every typed constant
c ∈ Σσ.

3. Rσ→τ (f, g) iff ∀x ∈ Aσ, y ∈ Bσ •Rσ(x, y) ⇒
Rτ (AppA f x, AppB g y)

4. Rσ×τ (p, q) iff Rσ(Proj1 p, Proj1 q) and
Rτ (Proj2 p, Proj2 q)

5. R is directed-complete as a unary predicate over
A× B; i.e. limits of related directed sets are related

6. For alla′ v a in Aσ andb′ v b in Bσ,
Rσ(a, b) ⇒ Rσ(a′, b′)

7. Rσ→σ(f, g) ⇒ Rσ(FixA f, FixB g)
2

This definition is essentially that given by Mitchell [8], and
extends the basic definition by addition of the fifth and sixth
clauses, which require a relation to be directed-complete
and downward-closed with respect to the order structures
of related domains, and the seventh clause, which extends
the relation to fixpoints.

Lemma 3.1: Let σ, σ1, . . . , σn, τ be pointed types and
supposeR ⊆ A× B is logical. Then

• RPred σ(A[|Univ|],B[|Univ|]) and
RPred σ(A[|UnDef|],B[|UnDef|]) at each type,σ;

• RPred σ(A[|$P |],B[|$Q|]) ⇔ RPred σ(A[|P |],B[|Q|])

• RPred σ(A[|P1|],B[|P2|]) ∧
RPred (σ→τ)(A[|P1 → Q1|], B[|P2 → Q2|]) ⇒
RPred τ (A[|Q1|],B[|Q2|])

• RPred σ(A[|CnP1 . . . Pn|],B[|CnQ1 . . . Qn|]) ⇔
∀i ∈ 1 .. n •RPred σi(A[|Pi|], B[|Qi|])

whereCn :: σ1 × · · · × σn → σ

andPi =
{

$Pi if C(n) is strict in itsith argument
Pi otherwise

andQi is defined similarly

• RPred σ(A[|P1|],B[|P2|]) ∧ RPred σ(A[|Q1|], B[|Q2|]) ⇒
RPred σ(A[|P1 ∧ Q1|],B[|P2 ∧ Q2|])

• RPred σ(A[|P1|],B[|P2|]) ∨ RPred σ(A[|Q1|], B[|Q2|]) ⇒
RPred σ(A[|P1 ∨ Q1|],B[|P2 ∨ Q2|])

Proof: The proof is by induction on the structure of non-
recursive predicates. For each form of predicate, we show
that the semantics of a ground term at the given type sat-
isfies the relation iff it belongs to the set specified by the
predicate in both the modelsA andB.

case Univ :: Pred σ: SinceA[|Univ|]Pred σ = Adσe⊥ and
B[|Univ|]Pred σ = Bdσe⊥, conclude that∀t •A[|t|]σ ∈
A[|Univ|]Pred σ andB[|t|]σ ∈ B[|Univ|]Pred σ

case UnDef :: Predσ:
∀t :: σ •A[|t|] = ⊥A ∈ A[|UnDef|] ⇒
∃t′ :: σ •B[|t′|] = ⊥B ∈ B[|UnDef|] andRσ(⊥A,⊥B)

case $P :: Pred σ: Since R is downward-closed,
RPred σ(A[|P |], B[|P |]) ⇔

RPred σ(A[|P |] \ {⊥}, B[|P |] \ {⊥})

case P → Q: ∀f ∈ A[|P1 → Q1|], g ∈ B[|P2 →
Q2|] •Rσ→τ (f, g) There are four cases:

– f = ⊥A andg = ⊥B Then∀a ∈ A[|P1|], b ∈
B[|P2|] •AppA f a = ⊥A andAppB g b = ⊥B
andRτ (⊥A,⊥B)

– f = ⊥A and g 6= ⊥B but ∀b ∈
B[|P2|] •AppB g b = ⊥B andRτ (⊥A,⊥B)

– f 6= ⊥A and g = ⊥B but ∀a ∈
A[|P1|] •AppA f a = ⊥A andRτ (⊥A,⊥B)

– f 6= ⊥A and g 6= ⊥B and ∀a ∈
A[|P1|], b ∈ B[|P2|] •Rτ (AppA f a, AppB g b)
with AppA f a ∈ A[|Q1|] andAppB g b ∈ B[|Q2|]

⇔ RPred (σ→τ)(A[|P1 → Q1|], B[|P2 → Q2|])

case C(0) whereσ = data C(0) | · · · | C(n)τ1 · · · τn:
∀a ∈ Adσe • a ∈ A[|C(0)|] iff a = C

(0)
A and

∀b ∈ Bdσe • b ∈ B[|C(0)|] iff b = C
(0)
B and

Rσ(C(0)
A , C

(0)
B )

⇔ RPred σ(A[|C(0)|],B[|C(0)|])

case C(n)[P1 · · ·Pn] where σ = data C(0) | · · · |
C(n)τ1 · · · τn:

RPred τ1(A[|P1|],B[|Q1|]) · · ·RPred τn(A[|Pn|],B[|Qn|]) ⇒
(∀a1 ∈ A[|P1|] · · · an ∈ A[|Pn|] •
∀b1 ∈ B[|Q1|] · · · bn ∈ B[|Qn|] •

Rτ1(a1, b1) ∧ · · · ∧ Rτn(an, bn)) and
∀a ∈ Adσe⊥ • a ∈ A[|C(n)P1 · · ·Pn|] iff

∃a1 ∈ A[|P1|] · · · an ∈ A[|Pn|] • a = C
(n)
A a1 . . . an and

∀b ∈ Bdσe⊥ • b ∈ B[|C(n)P1 · · ·Pn|] iff

∃b1 ∈ B[|P1|] · · · bn ∈ B[|Pn|] • b = C
(n)
B b1 . . . bn and

Rτ1(a1, b1) ∧ · · · ∧ Rτn(an, bn)) ⇒
Rσ(A[|C(n)a1 . . . an|],B[|C(0)b1 . . . bn|])

⇔ RPred σ(A[|C(n)P1 · · ·Pn|], B[|C(n)Q1 · · ·Qn|])

11



(The argument is similar when the constructorC(n) is
strict in one or more arguments, except that the predi-
cates in strict argument positions are strengthened.)

case P ∧ Q: RPred σ(A[|P |],B[|P |]) and
RPred σ(A[|Q|],B[|Q|]) ⇒ RPred σ(A[|P |] ∩ A[|Q|],

B[|P |] ∩ B[|Q|])

case P ∨ Q: RPred σ(A[|P |],B[|P |]) and
RPred σ(A[|Q|],B[|Q|]) ⇒ RPred σ(A[|P |] ∪ A[|Q|],

B[|P |] ∪ B[|Q|])
2

Lemma 3.2Letσ be a pointed type and supposeR ⊆ A×B
is logical. Then

RPred σ(A[|Lfp ξ •H|], B[|Lfp ξ •H|]) and
RPred σ(A[|Gfp ξ •H|], B[|Lfp ξ •H|])
iff ∃P :: Predσ •RPred σ(A[|P |], B[|P |]) ⇒
RPred σ(A[|H[P/ξ]|], B[|H[P/ξ]|])

Proof: For the “if” direction of the bi-implication, we can
use natural induction for each of the l.f.p. and g.f.p. forms.
Suppose the right-hand side of the bi-implication holds. Re-
ferring to the semantics of the l.f.p. formula, we shall show
that every finite union relates to itself.

For an l.f.p. predicate, the inductive hypothesis is

Rσ(
n⋃

i=0

A[|Hi[UnDef]|],
n⋃

i=0

B[|Hi[UnDef]|])

The base case for the induction is furnished by

Rσ(⊥A,⊥B) ⇔ RPred σ(A[|H0[UnDef]|],B[|H0[UnDef]|])

sinceσ is pointed and[|UnDef|]σ = {⊥} in every model.
For the induction step, substituteHn[UnDef] for the ex-

istentially bound predicate variableP in the right-hand side
of the bi-implication and conclude from the inductive hy-
pothesis and the definition ofHi[P ]

RPred σ(
n+1⋃
i=0

A[|Hi[UnDef]|],
n+1⋃
i=0

B[|Hi[UnDef]|])

Thus, by natural induction, the semantics ofn-times itera-
tions ofH inA andB are related at each natural number,n.
The nested unions are directed sets. We invoke the property
that a logical relation is closed under limits of finite directed
sets to conclude that the semantics of the l.f.p. formula are
related.

The “only-if” direction of the bi-implication follows im-
mediately from the property of a fixed-point,Lfpξ •H =
H[Lfpξ •H/ξ].

For g.f.p. formulas, a similar inductive argument, using
for its base caseRPred σ(A[|Univ|],B[|Univ|]), shows that the
relation includes all finite intersections from the definition

of g.f.p. semantics. Downward closure of R assures the
existence of a limit, hence theA andB semantics of the
g.f.p. are also related.

Theorem 3.1:Parametricity for predicates.
LetR ⊆ A×B be a logical relation. Then the following

are logically equivalent conditions for the induced relation
of predicatesP andQ at a generalized type:

R∀α.Pred σ(A[|P |],B[|Q|]) and
∃τ :: type•RPred σ[τ/α](A[|P |],B[|Q|])

Proof: From Corollary 3.1 and the definition of logical re-
lations extended to predicates we have

R∀α.Pred σ(A[|P |],B[|Q|]) =⋃
τ ::typeRPred σ[τ/α](A[|P |],B[|Q|])

≡ ∃τ :: type• ∀a, b • a ∈ A[|P |]σ[τ/α] ∧
b ∈ B[|Q|]σ[τ/α] ⇔ Rσ[τ/α](a, b)

≡ ∃τ :: type•RPred σ[τ/α](A[|P |],B[|Q|])

2

12


