
Pattern-driven Reduction in Haskell

William L. Harrison 1

Pacific Software Research Center
OGI School of Science & Engineering
Oregon Health & Science University

Beaverton, Oregon, USA

Richard B. Kieburtz 2

Pacific Software Research Center
OGI School of Science & Engineering
Oregon Health & Science University

Beaverton, Oregon, USA

Abstract

Haskell is a functional programming language with nominally non-strict semantics,
implying that evaluation of a Haskell expression proceeds by demand-driven reduc-
tion. However, Haskell also provides pattern matching on arguments of functions,
in let expressions and in the match clauses of case expressions. Pattern-matching
requires data-driven reduction to the extent necessary to evaluate a pattern match
or to bind variables introduced in a pattern. In this paper we provide both an ab-
stract semantics and a logical characterization of pattern-matching in Haskell and
the reduction order that it entails.

1 Introduction

Functional programming languages are often given a semantics in terms of a
rewrite system inspired by Church’s lambda calculus. Unlike the rewriting
system of the lambda calculus, the rules for reduction of terms in a functional
programming language do not generally have the property of confluence, but
embody a strategy for evaluation order. Two popular such strategies are se-
lection of a leftmost-innermost redex, known as “call-by-value”, and leftmost-
outermost, known as “call-by-name”, or with the addition of a mechanism for
reduction caching, as “lazy” evaluation.

1 Email: wlh@cse.ogi.edu
2 Email: dick@cse.ogi.edu

mailto:wlh@cse.ogi.edu
mailto:dick@cse.ogi.edu

For pragmatic reasons, programming languages nearly always incorporate
term structures whose evaluation by reduction require exceptions to the de-
fault strategy. These are typically terms that manifest some notion of control
of evaluation, such as conditional or case expressions, or in a lazy language,
operations on mutable state objects or I/O commands. This paper explains
such a circumstance, arising in the pattern-driven evaluation of expressions in
Haskell.

1.1 Pattern-matching in Haskell

Haskell is known as a lazy functional language, implying that the default
reduction strategy used to evaluate terms to a head-normal form is leftmost-
outermost. Furthermore, the data constructors of Haskell’s algebraic data
types are non-strict—a constructor application is a head-normal form even if
the argument terms are unnormalized.

However, Haskell also employs pattern-matching to select among alter-
native branches of a case expression or alternative equations of a function
definition. Pattern-matching can force partial evaluation of an argument to a
function or a case discriminator (i.e., the “e” in “case e of . . .”), whether or
not the value of any variable bound in the pattern is ever demanded. In that
sense, the reduction order mandated by pattern-matching is not lazy and may
deviate from a leftmost-outermost strategy.

Of course, situations arise in which a programmer “knows” that a certain
pattern-match would succeed, so pattern-matching for control purposes (e.g.,
selecting a branch in a case expression) can be delayed until a variable within
the pattern is demanded. By doing so, one makes the pattern-matching lazier
and thus more in harmony with Haskell’s default evaluation strategy. Haskell
provides a prefix notation (∼) with which a programmer can indicate that
pattern-matching is disabled for control. A control-disabled pattern (called
irrefutable in the Haskell literature) serves only to specify that variables oc-
curring in the pattern are bound by a successful match. Such bindings can
be evaluated lazily. Control-disabled patterns call for a reduction strategy
different from nominal, pattern-driven reduction.

The reduction strategy employed to evaluate Haskell programs containing
pattern constructs is implicit in the language definition, although a careful
reading of the Haskell Report[5] is necessary to uncover this reduction strat-
egy. It is perhaps the aspect of the Haskell language least understood by
Haskell amateurs. This paper gives a semantics for the fragment of Haskell
that involves pattern-matching, employing monads to encapsulate control ef-
fects. It also proposes inference rules of a programming logic for this language
fragment. The logic is part of a larger framework, developing and implement-
ing a property verification logic for the full Haskell language.

The semantics and the logic provide complementary but coherent formal
descriptions that are consistent with the language definition [5]. They should
help a reader to comprehend the nuances of Haskell reduction strategies.

2

type Name = String

data P = Pvar Name | Pwildcard | Pcondata Name [P] | Ptilde P {- Patterns -}

data E = Var Name | Undefined | ConApp (Name,[LS]) [E] | Case E [(P,E)] {- Expressions -}

data LS = Lazy | Strict deriving Eq

Fig. 1. Abstract Syntax of a Haskell Fragment

2 A Haskell fragment and its informal semantics

In this section, we give an overview of the Haskell fragment specified in this
paper and give an informal description of its semantics. Although the frag-
ment considered here is small, it is large enough to expose the relevant issues
in Haskell’s pattern-directed evaluation of expressions. The expressions we
consider are case expressions and datatype constructor applications. Haskell
datatypes may be declared with strictness annotations[5] and this perturbs
the way patterns are matched and constructor applications are evaluated as
we show below. Among the patterns we consider are the control-disabled pat-
terns (i.e., patterns annotated with ∼). Figure 1 presents the abstract syntax
of the fragment, written as two Haskell datatypes, E (for expressions) and P

(for patterns).

2.1 Patterns in Haskell

Patterns may occur in several different syntactic contexts in Haskell—in case
branches, explicit abstractions, or on the left-hand sides of definitions. We
say that a pattern is abstracted if it occurs in an operand position on the left-
hand side of a function definition 3 , under a lambda-symbol (the backslash,
in Haskell) or to the left of the arrow symbol (->) in a case branch. Since
the roles played by abstracted patterns are similar in every context, we shall
focus on patterns as they occur in case expressions.

The datatype P in Figure 1 defines the abstract syntax for the patterns we
consider in this paper.

2.1.1 Variables and wildcard patterns

A variable is itself a pattern which matches any term 4 . Thus a match with
a variable never fails and always accomplishes a binding. A term need not be
evaluated to match with a pattern variable.

Haskell designates a so-called wildcard pattern by the underscore character
(). The wildcard pattern, like a variable, never fails to match but it entails
no binding.

3 In a local (let) definition, a pattern may occur as the entire left-hand side of an equation.
Such an occurrence is implicitly control-disabled, even if it is not prefixed by the character
(∼).
4 As Haskell is strongly typed, a variable can only be compared with terms of the same
type.

3

2.1.2 Constructor patterns: strict and lazy

When a data constructor occurs in a pattern, it must appear in a saturated
application to sub-patterns. That is, a constructor typed as a k-ary function
in a datatype declaration must be applied to exactly k sub-patterns when it
is used in a pattern.

When a constructor occurs as the top-level operator in a pattern, a match
can occur only if the case discriminator evaluates to a term that has the
same constructor as its primary operator. Subterms of the discriminator must
match the corresponding sub-patterns of the constructor pattern or else the
entire match fails. If a sub-pattern happens to be a variable or a wildcard, no
further evaluation of the corresponding sub-term of the matching expression
is required.

However, a constructor may be declared (in a datatype declaration) to be
strict in one or more of its argument positions by prefixing the character (!) to
the type expressions in these argument positions. When a constructor is strict
in its ith argument position, an application of the constructor will evaluate
its ith argument to head normal form. Thus a pattern match involving a
constructor declared to be strict in one or more argument positions implicitly
forces evaluation of the corresponding subexpressions of a matching term.

2.1.3 Control-disabled patterns

Disabling a pattern for control does not disable the binding function of a
match, it merely defers binding until further computation demands a value
for one of the variables occurring in the pattern. When that happens, the
focus of computation returns to the deferred pattern match, which is fully
evaluated in order to bind the variables introduced in the pattern. Should a
deferred pattern match fail, no alternative is tried, as might have been the
case in a normal match failure. Failure of a deferred pattern match causes an
unrecoverable program error.

2.1.4 Matching patterned abstractions

An abstracted pattern fulfills two roles:

• Control: A case discriminator expression is evaluated to the extent neces-
sary to determine whether it matches the pattern of a case branch. If the
match fails, control shifts to try a match with the next alternative branch,
if one is available.

• Binding: When a match succeeds, each variable occurring in the pattern
is bound to a subterm corresponding in position in the (partially evalu-
ated) case discriminator. Since patterns in Haskell cannot contain repeated
occurrences of a variable, the bindings are unique at any successful match.

2.2 Evaluating case expressions

When a case expression is evaluated, the first case branch is applied to the
case discriminator (the expression between the keywords case. . . of). If the

4

-- Semantic Functions for E and P -- Environments

mE :: E -> Env -> V type Name = String

mP :: P -> V -> Maybe [V] type Env = Name -> V

-- Domain of Values {- functions -} {- structured data -}

data V = FV (V -> V) | Tagged Name [V]

-- Function composition (diagrammatic) -- Kleisli composition (diagrammatic)

(>>>) :: (a -> b) -> (b -> c) -> a -> c (<>) :: (a->Maybe b)->(b->Maybe c)-> a->Maybe c

f >>> g = g . f f <> g = \ x -> f x >>= g

-- Domains are pointed -- Purification: the "run" of Maybe monad

bottom :: a purify :: Maybe a -> a

bottom = undefined purify (Just x) = x

purify Nothing = bottom

-- Alternation -- Semantic "seq"

fatbar :: (a->Maybe b) -> semseq :: V -> V -> V

(a->Maybe b) -> (a->Maybe b) semseq x y = case x of

f ‘fatbar‘ g = \ x -> (f x) ‘fb‘ (g x) (FV _) -> y ;

where fb :: Maybe a -> Maybe a -> Maybe a (Tagged _ _) -> y

Nothing ‘fb‘ y = y

(Just v) ‘fb‘ y = (Just v)

Fig. 2. Semantic Operators

case discriminator matches the abstracted pattern of this branch, then the
body of the case branch is evaluated in a context extended with the value
bindings of pattern variables made by the match. If the discriminator fails
to match the pattern, then the next in the list of case branches is applied to
the discriminator, and so on, until a pattern is found to match. If there is
no branch whose pattern matches, then evaluation of the case expression fails
with an unrecoverable error.

For example, evaluating the following case expressions gives these results:

data Tree = T Tree Tree | S Tree | L | R
case T L R of {T (S x) y -> y; T x y -> x} ---> L
case T L R of {T ~(S x) y -> y; T x y -> x} ---> R
case T L R of {T ~(S x) y -> x; T x y -> y} ---> program error (match)
case T L R of {~(T (S x) y) -> y; T x y -> x} ---> program error (match)

In the first of the case expressions above, the constructor L fails to match
the embedded pattern (S x) in the first case branch. The match failure shifts
control to the second case branch. In the second example, the embedded pat-
tern ∼(S x) is control-disabled. The term (T L R) thus matches the pattern
(T ∼(S x) y) binding R to the variable y. Since the variable x is not de-
manded, the potential mismatch of pattern (S x) with the subterm L is never
attempted. In the third example, the body of the first case branch demands
a value for x, thereby forcing a deferred match of the subterm L with the
pattern ∼(S x). The deferred match fails, resulting in a program error. The
fourth example illustrates that a deferred match of the term (T L R) against
the pattern (T (S x) y) fails, although the match was evaluated in response
to a request for a binding for y alone.

5

3 Formal Semantics

This section outlines the formal semantics of the Haskell fragment considered
in this paper. This semantics has been described in detail elsewhere [3], so the
presentation here will be brief. The semantics is presented as a metacircular
interpreter for the Haskell fragment whose abstract syntax is specified in Fig-
ure 1. The correspondence between terms of the abstract syntax and terms
in Haskell’s concrete syntax should be evident to the reader with just a few
hints. The term ConApp (‘‘C’’,[Strict,Lazy]) [Var ‘‘x’’,Var ‘‘y] in
the abstract syntax represents a Haskell constructor application C x y, where
C is a data constructor that has been declared strict in its first argument and
non-strict in its second argument. A corresponding pattern term in the ab-
stract syntax would be Pcondata ‘‘C’’ [Pvar ‘‘x’’,Pvar ‘‘y’’]. Strict-
ness attributes of the data constructor are not explicitly represented in a
pattern term.

The interpreter, which is written in Haskell itself, makes use of standard
techniques and structures from the denotational description of programming
languages and uses a monad to model the control effects of pattern-matching.
Although the semantic metalanguage here is Haskell, care has been taken
to use notation which will be recognizable by any functional programmer.
However unlike many functional languages, Haskell has explicit monads, and
so we give an overview here of Haskell’s monad syntax 5 . The semantics makes
use of an error monad [6], which is modeled in Haskell by the Maybe monad.
This monad is based upon the datatype:

Maybe a = Just a | Nothing

The constructor Just encloses a normal expression of type a and the construc-
tor Nothing models an evaluation failure as a data value.

In every monad there is a unit operator (called return in Haskell) and
a binary operation which is called “bind” in Haskell and is represented by
the infix operator (>>=). The unit of a monad injects an ordinary (non-
monadic) value into the structure of the monad. The bind operation is like
a function application expressed in diagrammatic order (i.e. arg >>= fn). It
accounts for propagation of the monadic structure of the argument through
the computation of the application, which may affect that structure. The unit
and bind operators satisfy a set of equations that hold for all monads, thus
providing a uniform algebraic framework in which to express computational
effects.

The structure of Haskell’s Maybe monad is specified by:
data Maybe a = Just a | Nothing

return :: a -> Maybe a (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

return = Just (Nothing >>= f) = Nothing

(Just x >>= f) = f x

Haskell provides an alternative syntax for bind (>>=) called “do notation”
which is defined by:

5 We assume the reader has some familiarity with monads [6].

6

mP :: P -> V -> Maybe [V]

mP (Pvar x) v = Just [v]

mP (Pcondata n ps) (Tagged t vs) = if n==t then (stuple (map mP ps) vs) else Nothing

mP Pwildcard v = Just []

mP (Ptilde p) v = Just(case mP p v of { Nothing -> replicate lp bottom ; Just z -> z })

where lp = length (fringe p)

replicate 0 x = []

replicate n x = x : (replicate (n-1) x)

fringe :: P -> [Name] --- the fringe of a pattern

fringe (Pvar n) = [n] fringe Pwildcard = []

fringe (Ptilde p) = fringe p fringe (Pcondata _ ps) = concat (map fringe ps)

stuple :: [V -> Maybe [V]] -> [V] -> Maybe [V]

stuple [] [] = Just []

stuple (q:qs) (v:vs) = do { v’ <- q v ; vs’ <- stuple qs vs ; Just (v’++vs’) }

Fig. 3. Semantics of a Haskell Fragment: Patterns

do { y <- x ; f } = (x >>= (\y -> f))

Figure 2 contains a description of the semantic setting for the Haskell
fragment considered in this paper. It is in most respects a conventional
denotational-style semantics for a functional language. The semantics inter-
pretation function for expressions, mE, maps an expression and an environment
to a value in the domain V. The value domain V is a c.p.o. with the structure
of a universal domain [2] over the sum of functions and structured data. The
semantics interpretation of patterns is given by the function mP, which takes
a pattern and returns a map of type (V -> Maybe [V]) (more will be said
about this type in Section 3.1).

We use two composition operators, each written as an infix operator in
diagrammatic order. The symbol (>>>) denotes function composition and the
symbol (<>) denotes Kleisli composition in the Maybe monad. It is assumed
that the domain of values is pointed in every type; that is, at every type,
the domain contains a bottom element bottom (usually written ⊥), which is
modeled in Haskell by the polymorphic constant undefined.

Figure 2 also displays two combinators integral to modeling case ex-
pressions and patterns, called fatbar and purify. If m1 and m2 have type
(V -> Maybe V), then ((fatbar m1 m2) v) exhibits sequencing behavior sim-
ilar to a case expression with two branches, trying first to evaluate the appli-
cation m1 v, then if that fails, trying to evaluate m2 v.

The purify operator converts a Maybe-computation into a value, sending
a Nothing to bottom. Post-composing with purify signifies that expressions
whose evaluation ultimately result in pattern-match failures (e.g., exhaustion
of the branches of a case expression) denote bottom.

3.1 Dynamic Semantics of the Haskell Pattern Fragment

The dynamic semantics of Haskell case expressions (without guards) is given
in Figure 4. The semantics of pattern-matching is given in Figure 3. Apply-
ing these semantics to the examples given in Section 2.2 yields the indicated

7

mE :: E -> Env -> V

mE (Var n) rho = rho n

mE (Case e ml) rho = mcase rho ml (mE e rho)

mE (ConApp (n,ls) es) rho = evalL (zip es ls) rho n []

where evalL :: [(E,LS)] -> Env -> Name -> [V] -> V

evalL [] rho n vs = Tagged n vs

evalL ((e,Strict):es) rho n vs = semseq (mE e rho)

(evalL es rho n (vs ++ [mE e rho]))

evalL ((e,Lazy):es) rho n vs = evalL es rho n (vs ++ [mE e rho])

mE Undefined rho = bottom

match :: Env -> (P,E) -> V -> Maybe V

match rho (p,e) = mP p <> ((\vs -> mE e (extend rho xs vs)) >>> Just)

where xs = fringe p

mcase :: Env -> [(P,E)] -> V -> V

mcase rho ml = (fatbarL $ map (match rho) ml) >>> purify

where fatbarL :: [V -> Maybe V] -> V -> Maybe V

fatbarL ms = foldr fatbar (\ _ -> (Just bottom)) ms

Fig. 4. Semantics of a Haskell Fragment: Expressions

results.

From the semantics specification we can infer that the effect of deferring
pattern match failure is characterized by the following equivalence:
(mP (∼p) v) is Just[bottom,. . .,bottom] ⇔ (mP p v) is Nothing. Even
when (mP p v) fails (i.e., is Nothing), (mP (∼p) v) still succeeds, but all of
the bindings created thereby are bottom.

4 Logic

While the dynamic semantics defines a meaning for expressions by providing
an abstract evaluation model, a verification logic expresses static assertions
about properties of the semantics. An assertion can take the form of a k-
ary predicate applied to k terms. For simplicity, we restrict ourselves here to
unary predicates (k = 1).

We write t ::: P for the assertion that term t satisfies predicate P . Be-
cause function and data constructor applications are non-strict in Haskell’s
evaluation semantics, two notions of satisfaction of a predicate are sensible.

We say that a predicate, P , is weakly satisfied by an expression t if the
denotation of t belongs to the set specified by P . It is strongly satisfied if, in
addition, the denotation of t is not the bottom element in its type domain.
By convention, a predicate assumes its weak interpretation unless otherwise
annotated. An otherwise weak predicate may be explicitly strengthened by
prefixing the symbol ($).

P-logic 6 , a verification logic for Haskell, is based upon the familiar Gentzen-
style sequent calculus [1]. In this section we give a brief introduction to the
syntax of P-logic, as well as some inference rules that are relevant to pattern-
matching in Haskell.

6 The name P-logic is short for Programatica logic, as the logic has been developed as part
of the Programatica project [4].

8

4.1 Predicates in P-logic

Atomic, unary predicates include the predicate constants, Univ and UnDef,
which are respectively satisfied by all terms and by only those terms whose
values are undefined.

There are two principal ways that compound predicates are formed in P-
logic.

(i) The constructors of datatypes declared in a Haskell program are implic-
itly “lifted” to act as predicate constructors in P-logic. For example, in
the context of a program, the list constructor (:) combines an expres-
sion h of type a and an expression t of type [a] into a new expression
(h : t) of type [a]. In the context of a formula, the same constructor
combines a predicate P and a predicate Q into a new predicate, (P : Q).
This predicate is satisfied by a Haskell expression that normalizes to a
term of the form (h : t) and whose component expressions weakly satisfy
the assertions h ::: P and t ::: Q. The default mode of interpretation
of the component predicates is weak because the semantics of the data
constructor does not require evaluation of its arguments.

(ii) The “arrow” predicate constructor is used to compose predicates that ex-
press properties of case branches. An arrow predicate P → Q is satisfied
by a case branch (p -> e) if, whenever the case discriminator satisfies the
pattern predicate, P , the body, e, of the case branch satisfies Q.

4.2 Inference Rules for Properties of the Haskell Fragment

4.2.1 Constructor application

Rules for constructor application are derived from a Haskell datatype declara-
tion. A datatype declaration serves to define the data constructors of the type,
giving the signature of each constructor as a sequence of type expressions.

data T = · · · | C(k) τ1 . . . τk | · · ·

Recall that the strictness annotations from the signature of a constructor
are represented explicitly in the abstract syntax of a constructor application,
although they are not manifested in the concrete syntax.

A constructor application is lifted to a predicate constructor application
by the function:

sigma :: E -> [Pr] -> Pr
sigma (ConApp (n,ls) _) prs =

let prs’ = take (length ls) prs
s = and $ map (\(pr,l) -> isStrong pr || l==Lazy) (zip prs’ ls)

where isStrong (Strong _) = True
isStrong _ = False

in if s then Strong $ ConPred (n,ls) prs’
else ConPred (n,ls) prs’

where ls lists the strictness declaration (Lazy or Strict) of the constructor
in each argument position. The function zip is defined in Haskell’s Standard

9

-- Abstract syntax of predicates

data Pr = Univ | UnDef | PrCon Name [Pr] | Strong Pr

-- Skeleton of a pattern

skeleton :: P -> (Name -> Pr) -> Bool -> (Pr,Bool) mapSkel :: [P] -> (Name -> Pr)

skeleton (Pvar n) e b = case (e n) of -> Bool -> ([Pr],Bool)

pr@(Strong _) -> (pr,True) mapSkel [] _ _ = ([],False)

pr -> (pr,False) mapSkel (p:ps) e b =

skeleton Pwildcard e _ = (Univ,False) let (pr,s) = skeleton p e b

skeleton (Pcondata (n,ls) ps) e b = (prs,s’) = mapSkel ps e b

let (prs,s) = mapSkel ps e True in ((pr:prs),s || s’)

in if b || s then (Strong (PrCon n prs),True)

else (Univ,False)

skeleton (Ptilde p) e _ = skeleton p e False

Fig. 5. Calculation of Pattern Predicates

Prelude as:

zip [a1, . . . , an] [b1, . . . , bn] = [(a1, b1), . . . , (an, bn)]

Notice that when a predicate constructor lifted from a strict data con-
structor is applied to a predicate argument, the resulting predicate is strong
only if the argument predicate is so, whereas a predicate derived from a lazy
data constructor is always strong. A strong predicate formula $C(k) P1 . . . Pk

is satisfied by a well-defined term of the form C(k) t1 . . . tk whenever each of
the tj satisfies the corresponding predicate Pj.

Rule schemas for properties of a constructor application are:

Γ `P t1 ::: P1 · · · Γ `P tk ::: Pk

Γ `P C(k) t1 . . . tk ::: C(k) P1 . . . Pk

(1 ≤ k)(1)

and, where C and K are distinct constructors in the same data type:

Γ `P C(k) t1 . . . tk ::: $¬K(n) Univ . . . Univ︸ ︷︷ ︸
n−times

(2)

4.3 Pattern matching

Match clauses have associated with them predicates of a distinct kind. A
match clause whose expression body has the Haskell type (τ) may satisfy a
predicate of type Maybe Pred τ . These predicates are formed either with the
unary predicate constructor Just or the nullary constructor Nothing.

4.3.1 Pattern predicates

Because patterns may be nested to arbitrary depths, it is inconvenient to use
the syntax of patterns directly in rules. Instead we define a syntactically flat-
tened representation for patterns to allow a simpler representation of pattern
predicates in rules.

First, we need the concept of the fringe of a pattern, the variables that
have defining occurrences in the pattern, listed from left to right.

Definition 4.3.1.1: The fringe of a pattern is the list of (distinct) variables

10

whose definition is given by induction on the abstract syntax of patterns by
the Haskell function fringe in Figure 3.

Next, we define a function that produces a pattern predicate from a pattern
and an environment that binds predicates to the variables in the fringe of the
pattern.

Definition 4.3.1.2: The pattern predicate formed by instantiating a pattern
relative to a predicate environment is defined inductively by the Haskell func-
tion skeleton in Figure 5.

We use the notation π(p) to designate a “flattened” pattern predicate con-
structor. Formally,

π(p) P1 · · ·Pn =def fst (skeleton p (zip (fringe p) [P1, . . . , Pn]) True)

where n = length (fringe p)

2

The pattern predicate calculated by skeleton will ignore control-disabled
subpatterns that occur in a pattern, replacing them by the universal predicate,
Univ, unless an explicitly strengthened predicate is bound in the environment
to a variable in the fringe of such a subpattern. In such a case, the skeleton of
the subpattern is fully elaborated in the skeleton computation. In consequence,
if an instance of a verification rule such as Rule (3) uses strong predicates in its
hypotheses, then the pattern predicate in its conclusion will require a pattern
match that evaluates all subterms that are asserted by the strong predicates
to be well-defined.

For example, two pattern predicates that are derived from one of the pat-
terns given in the example of Section 3.1 are:

π(T ∼(S x) y) Univ Univ = $(T Univ Univ)

π(T ∼(S x) y) $Univ Univ = $(T $(S $Univ) Univ)

The strength annotation on the first predicate argument in the second line
above forces the pattern predicate to assert definedness of the subpattern
(S x).

4.3.2 The domain of a pattern

Informally, the domain of a pattern is the set of terms that match the pat-
tern. The criterion for matching patterns in Haskell is complicated somewhat
by the possibility that a control-disabled subpattern may be embedded into a
normally stricter host pattern. In program execution, the match of a control-
disabled pattern that is embedded in a case branch is deferred, pending eval-
uation of the body of the case branch. The match is dynamically performed
only if the body is strict in a variable that occurs in the pattern. When a
match failure occurs during a deferred pattern match, the match failure is
unrecoverable.

We define the domain of a pattern as a predicate characterizing the set of
terms matching the pattern in an non-deferred match.

11

Definition 4.3.2.1: Dom(p), is the predicate defined by applying the predi-
cate pattern constructor derived from a pattern, p, to a list of Univ predicates.

Dom(p) =def π(p) Univ · · ·Univ

The domain predicate of a pattern is calculated by:

dom p = fst (skeleton p (_ -> Univ) True)

2

Notice that Dom(p) is either Univ or it is a strong predicate.

The formula ¬Dom(p) asserts that a term fails to match p or is undefined.
A strengthened domain predicate disjoined with its strong complement is in
effect, a partial definedness predicate. Any term that satisfies either Dom(p)
or $¬Dom(p) is well defined in every subterm necessary to evaluate a control-
enabled match with the pattern p.

4.3.3 Properties of case branches

A case branch has a pair of properties, one that it exhibits when a case dis-
criminator matches its pattern and another that characterizes its behavior
when pattern-matching fails:

Γ, x1 ::: P1, · · · , xn ::: Pn `P t ::: Q

Γ `P {p -> t} ::: π(p) P1 · · ·Pn → $Just Q
(3)

where [x1, . . . , xn] = fringe p, and

Γ `P {p -> t} ::: $¬Dom(p) → $Nothing(4)

4.3.4 Properties of case expressions

The basic rules for a case expression are those for a single case branch:

Γ `P d ::: π(p)[P1, . . . , Pk] Γ `P br ::: π(p) P1 · · ·Pn → $Just Q

Γ `P case d of {br} ::: $Just Q
(5)

Γ `P d ::: $¬Dom(p)

Γ `P case d of {p -> t} ::: $Nothing
(6)

The following rules account for a case expression in which multiple case branches
are listed.

Γ `P case d of {br} ::: $Nothing Γ `P case d of {brs} ::: $Q

Γ `P case d of {br; brs} ::: $Q
(7)

where Q has the kind Maybe Pred.

Γ `P case d of {br} ::: $Just P

Γ `P case d of {br; brs} ::: $Just P
(8)

Two rules relate a property of a Haskell term of kind Maybe Pred to a
property of kind Pred.

Γ `P t ::: $(Just P)

Γ `P t ::: P

Γ `P t ::: $Nothing

Γ `P t ::: Univ
(9)

These rules allow a property of a case expression to be propagated to a context
that expects a property of kind Pred. When a pattern match can be proven
to fail, the concluded property, t ::: Univ, provides no specific information.

12

` L ::: Univ ` R ::: $R
(1)

` (T L R) ::: $(T Univ $R)
(1)

x ::: Univ, y ::: $R ` y ::: $R

` {(T~(S x) y) -> y} ::: $(T Univ $R)→$Just $R
(3)

` case (T L R) of { (T~(S x) y) -> y } ::: $Just $R
(5)

` case (T L R) of { (T~(S x) y) -> y } ::: $R
(9)

` (T L R) ::: $¬(S Univ)
(2)

` case (T L R) of {(S x) -> x} ::: $Nothing
(6)

` case (T L R) of {(S x) -> x} ::: Univ
(9)

Fig. 6. Distinguishing Pattern Match Success from Failure in the Logic
(Numbers refer to the rule that applies at each step.)

Figure 6 presents a sample derivation demonstrating how P-logic distin-
guishes pattern-matching success and failure. The second proof involves a
case expression which generates a pattern match failure. The only property
derivable of this expression in P-logic is Univ.

5 Conclusion

We have presented two succinct formalisms to specify the reduction semantics
of Haskell pattern-matching, a surprisingly complex aspect of the language.
A denotational semantics furnishes an abstract model for computation in the
language. A verification logic provides a deduction system in which to state
and prove properties of computations. The dual development of a denota-
tional semantics and a verification logic for a programming language affords
the opportunity to check soundness of the logical inference rules relative to
the model provided by the semantics. When the semantics is also given in
an executable framework, as has been done here for Haskell, soundness check-
ing can be partially automated, but a discussion of technique topic is left to
another paper.

We have focused attention on the fragment of Haskell in which expression
evaluation is directed by pattern-matching, as that aspect of the language has
seemed most in need of formal characterization. The deferred matching that
is required of control-disabled (∼) patterns is of particular interest. In the
dynamic semantics, a deferred pattern match is embedded in a continuation
that substitutes the value bottom in the bindings of pattern variables in case
the match fails. Thus any reference to one of those variables occurring in the
expression part if the case branch headed by that pattern is a reference to
the value bottom. In a logical characterization of a deferred pattern match,
unless it is explicitly asserted that one or more of the pattern variables sat-
isfies a strong property, only the property Univ is required of an argument
in a deferred pattern match. Thus, nothing is assumed about values taken
by pattern variables, which is compatible with the binding of bottom values

13

specified in the semantics.

In retrospect, one might question whether the generalization of control-
disabled patterns in Haskell, allowing (∼) annotations to be embedded in a
pattern in any context, has been worth the complexity that it adds to intu-
itively understanding the semantics of Haskell. For this language feature, the
logical characterization actually aids intuition, as well as providing rules for
formal reasoning.

Acknowledgment The authors wish to thank their colleagues on the Pro-
gramatica project, particularly Jim Hook, Mark Jones and Sylvain Conchon
for their encouragement and for numerous discussions on aspects of logic and
Haskell semantics.

References

[1] Jean-Yves Girard. Proofs and types, volume 7 of Cambridge tracts in theoretical
computer science. Cambridge University Press, 1989.

[2] Carl A. Gunter. Semantics of Programming Languages: Programming
Techniques. The MIT Press, Cambridge, Massachusetts, 1992.

[3] William Harrison, Tim Sheard, and James Hook. Fine control of demand in
haskell. In Sixth International Conference on the Mathematics of Program
Construction, Dagstuhl, Germany, volume 2386 of Lecture Notes in Computer
Science, pages 68–93. Springer Verlag, July 2002.

[4] Programatica Home Page. www.cse.ogi.edu/PacSoft/projects/programatica.
James Hook, Principal Investigator.

[5] Simon Peyton Jones and editors John Hughes. Report on the programming
language Haskell 98. Technical Report YALEU/DCS/RR-1106, Yale University,
CS Dept., February 1999.

[6] P. Wadler. The essence of functional programming. 19th POPL, pages 1–14,
January 1992.

14

	Introduction
	Pattern-matching in Haskell

	A Haskell fragment and its informal semantics
	Patterns in Haskell
	Evaluating case expressions

	Formal Semantics
	Dynamic Semantics of the Haskell Pattern Fragment

	Logic
	Predicates in P-logic
	Inference Rules for Properties of the Haskell Fragment
	Pattern matching

	Conclusion
	References

