
Under consideration for publication in J. Functional Programming 1

The Logic of Demand in Haskell

WILLIAM L. HARRISON
Department of Computer Science

University of Missouri
Columbia, Missouri

RICHARD B. KIEBURTZ
Pacific Software Research Center

OGI School of Science & Engineering
Oregon Health & Science University

Abstract

Haskell is a functional programming language whose evaluation is lazy by default. However,
Haskell also provides pattern matching facilities which add a modicum of eagerness to
its otherwise lazy default evaluation. This mixed or “non-strict” semantics can be quite
difficult to reason with. This paper introduces a programming logic, P-logic, which neatly
formalizes the mixed evaluation in Haskell pattern-matching as a logic, thereby simplifying
the task of specifying and verifying Haskell programs. In P-logic, aspects of demand are
reflected or represented within both the predicate language and its model theory, allowing
for expressive and comprehensible program verification.

1 Introduction

Although Haskell is known as a lazy functional language because of its default eval-
uation strategy, it contains a number of language constructs that force exceptions
to that strategy. Among these features are pattern-matching, data type strictness
annotations and the seq primitive. The semantics of pattern-matching are further
enriched by irrefutable pattern annotations, which may be embedded within pat-
terns. The interaction between Haskell’s default lazy evaluation and its pattern-
matching is surprisingly complicated. Although it offers the programmer a facility
for fine control of demand (Harrison et al., 2002), it is perhaps the aspect of the
Haskell language least well understood by its community of users. In this paper, we
characterize the control of demand first in a denotational semantics and then in a
verification logic called “P-logic”.

P-logic1 is a modal logic based upon the familiar Gentzen-style sequent calculus
(Girard, 1989). P-logic is expressive directly over Haskell expressions—the term
language of the logic is Haskell98. The two modalities of the logic, called weak and

1 The name P-logic is taken from the Programatica project (www.cse.ogi.edu/PacSoft/
projects/programatica) at OGI.

2 William L. Harrison and Richard B. Kieburtz

strong, determine whether a predicate is interpreted by a set of normalized values
of its type (the strong interpretation) or by a set of computations of its type, which
may or may not terminate (the weak interpretation). The strong modality is used
to characterize properties of an expression occuring in a strict context of a program,
or of an expression constructed in normal form. The weak modality can be used to
characterize properties of an expression occuring in a non-strict context.

This paper introduces the fragment of P-logic that provides verification condi-
tions for a core fragment of Haskell, including abstraction, application and case ex-
pressions (without guards). It also provides a self-contained description of a typed,
denotational semantics for this Haskell fragment. The semantics for the Haskell
fragment is based on an extension to the type frames semantics of the simply-typed
lambda calculus (Gunter, 1992; Mitchell, 2000) and is closely related to an earlier
treatment (Harrison et al., 2002). This semantics constitutes the core of a deno-
tational semantics for Haskell98, the whole of which will be published in sequel
articles.

Because Haskell patterns afford fine control of demand, it is not possible to give
complete verification conditions for patterned abstractions or case expressions in
a finite set of specific rules. In the presentation of P-logic, we give the logical
inference rules for patterns by defining verification condition generators—functions
on the term structure of patterns which construct pattern predicates. A verification
condition for a property of a Haskell case branch is derived by applying a verification
condition generator to its pattern and the list of predicates that its variables are
assumed to satisfy. It generates a predicate characterizing terms that can match the
pattern with its assumed properties. Verification condition generators are written
as Haskell functions in a prototype implementation of P-logic.

The remainder of the paper proceeds as follows. Section 2 gives an overview of the
Haskell fragment we consider here. This fragment contains the language constructs
that most directly make use of pattern-matching. Section 3 contains background
information for our semantic model: type frame semantics and the simple model of
ML polymorphism (Ohori, 1989b; Ohori, 1989a). Section 4 summarizes the formal
semantics of this fragment and Section 5 presents the fragment of P-logic that deals
with Haskell’s fine control of demand. Soundness of the P-logic inference rules is
established in Section 6 and Section 7 discusses some alternative approaches to
verification logics. Section 8 summarizes our conclusions.

2 A Haskell fragment and its informal semantics

This section describes the fragment of Haskell we consider in this paper. This frag-
ment, whose syntax is given in Figure 1, is representative of the Haskell constructs
that depend on pattern-matching and strictness annotations. It constitutes a nearly-
complete core language for Haskell expressions, omitting guarded expressions, type
classes and overloaded operators. Section 2.2 gives an informal overview of the
meaning of these constructs and Section 2.2.6 discusses how fine control of demand,
as specified in Haskell, entails complex evaluation strategies.

Journal of Functional Programming 3

type Name = String
data LS = Lazy | Strict deriving Eq
data Type = Name | Arrow Type Type | Name [Type]
data P = Pvar Name | Pcondata Name [(LS, P)] | Ptilde P | Pwildcard
data E = Var Name | Constr Name [(LS, Type)] | Abs Name E

| App E E | Case E [(P, E)] | Undefined

Fig. 1. Abstract Syntax of a Haskell Fragment

2.1 Data types

A data type declaration serves to define the data constructors of the type, giving
the signature of each constructor as a series of type scheme arguments with optional
strictness annotations. In the abstract syntax representation of a data constructor
(see Fig. 1), strictness or non-strictness in each argument is explicitly designated
by a tag of type LS. The signature of a data type, τ , is a finite set, Στ whose
elements are the abstract syntax terms designating the type signatures of the data
constructors of the type. For example, from a data type declaration

data T α1 · · ·αn = · · · | C σ1 · · ·σk | · · ·
in which a k-place constructor, C, is declared without any strictness annotations,
we obtain the signature element

Constr C [(Lazy, σ1), . . . , (Lazy, σk)] ∈ ΣT α1···αn

Had any of the type arguments in the constructor declaration been given a strictness
annotation, such as

T α1 · · ·αn = · · · | C ! σ1 · · ·σk | · · ·
then in the signature element for the constructor, the tag Strict would accompany
each of the listed type(s) that had been annotated in the declaration, i.e.

Constr C [(Strict, σ1), . . . , (Lazy, σk)] ∈ ΣT α1···αn

2.2 Case expressions

Patterns may occur in several different syntactic contexts in Haskell—in case branches,
explicit abstractions, or on the left-hand sides of definitions2. Since the roles played
by patterns are similar in each of these syntactic contexts, we shall focus on patterns
in case branches.

2 In a local (or let) definition, a pattern may occur as the entire left-hand side of an equation. A
pattern used in this way is implicitly irrefutable, even if it is not prefixed by the character (∼).

4 William L. Harrison and Richard B. Kieburtz

2.2.1 Evaluating case expressions

A Haskell case expression is an instance of the syntactic schema:

case d of {p1 → e1; · · · pn → en}
in which d is an expression, which we call the case discriminator, and each of the
{pi → ei} is a case branch, consisting of a pattern, pi and an expression, ei, called
the body of the branch.

When a case expression is evaluated, the case discriminator is matched against
the pattern of the first case branch. If the match succeeds, the body of the branch
is evaluated in a context extended with the value bindings of pattern variables
made by the match and returned as the value of the case expression. If the match
fails, succeeding branches are tried until either one of the patterns matches or all
branches have been exhausted. If no branch matches, then evaluation of the case
expression fails with an unrecoverable error (i.e., it denotes bottom).

2.2.2 Pattern matching is a binding operation

A pattern fulfills two roles:

• Control: A case discriminator expression is evaluated to an extent sufficient
to determine whether it matches the pattern of a case branch. If the match
fails, control shifts to try a match with the next alternative branch, if one is
available.
• Binding: When a match succeeds, each variable occurring in the pattern is

bound to a subterm corresponding in position in the (partly evaluated) case
discriminator. Since patterns in Haskell cannot contain repeated occurrences
of a variable, the bindings are unique at any successful match.

2.2.3 Variables and wildcard patterns

A variable used as a pattern never fails to match; it binds to any the value of any
term3. A value need not be normalized to match with a pattern variable.

Haskell designates a so-called wildcard pattern by the underscore character ().
The wildcard pattern, like a variable, never fails to match but it entails no binding.

2.2.4 Constructor patterns: strict and lazy

When a data constructor occurs in a pattern, it must appear in a saturated applica-
tion to sub-patterns. That is, a constructor typed as a k-ary function in a data type
declaration must be applied to exactly k sub-patterns when it is used in a pattern.

When a constructor occurs as the outermost operator in a pattern, a match
can occur only if the case discriminator evaluates to a term that has the same

3 As Haskell is strongly typed, a variable can only be compared with terms of the same type.

Journal of Functional Programming 5

constructor as its primary operator. Subterms of the discriminator must match the
corresponding sub-patterns of the constructor pattern or else the entire match fails.

If a constructor is lazy in its ith argument (i.e. its declaration has no strictness
annotation at that argument), the argument is evaluated only if a value is required
to match a corresponding sub-pattern. However, if the constructor is strict in its
ith argument position, a constructor application will evaluate the argument to head
normal form, whether or not a value is required for pattern matching.

2.2.5 Irrefutable patterns defer matching

Matching a constructor pattern against a case discriminator expression evaluates
the discriminator sufficiently to determine whether the pattern match succeeds.
Haskell also contains the pattern annotation (∼) for making pattern-matching lazier.
If p is a pattern, then matching a case discriminator against ∼p is deferred and the
focus of computation proceeds to evaluate the body of the case branch. Annotating
a pattern with (∼) does not disable the binding function of a match, it merely
defers binding until further computation demands a value for one of the variables
occurring in the pattern. When that happens, the focus of computation returns to
the deferred pattern match, which is fully computed in order to bind the variables
introduced in the pattern. Should a deferred pattern match fail, no alternative is
tried, as might have been the case in a normal match failure. Failure of a deferred
pattern match causes an unrecoverable program error. We can say that irrefutable
patterns are control-disabled.

2.2.6 Fine control of demand: An example

For example, with patterns constructed for the data type

data Tree = T Tree Tree | S Tree | L | R

we can construct the following case expressions:

case T L R of {T (S x) y -. y; T x y -> x} evaluates to L

case T L R of {T ∼(S x) y -> y; T x y -> x} evaluates to R

case T L R of {T ∼(S x) y -> x; T x y -> y} evaluates to error
case T L R of {∼(T (S x) y) -> y; T x y -> x} evaluates to error

In the first of the expressions above, the constructor L fails to match the embedded
pattern (S x) in the first case branch. The match failure shifts control to the second
case branch. In the second line, the embedded pattern ∼(S x) is control-disabled.
The term (T L R) thus matches the pattern (T ∼(S x) y), binding R to the variable
y. In the third line, the body of the first case branch demands a value for x, thereby
forcing a deferred match of the subterm L with the pattern ∼(S x). The deferred
match fails, resulting in a program error. The fourth line illustrates that a deferred
match of the term (T L R) against the pattern (T (S x) y) fails, although the match
was evaluated to head normal form in response to a request for a binding for y alone.

6 William L. Harrison and Richard B. Kieburtz

3 Background

The denotational semantics for the Haskell fragment extends the type-frames se-
mantics of the simply-typed lambda calculus (Gunter, 1992; Mitchell, 2000) to ac-
comodate polymorphism and the structure required for modeling Haskell pattern-
matching. Section 3.1 reviews type-frame semantics. Section 3.2 gives an overview
of the model of polymorphism adopted here for the Haskell fragment: the simple
model of ML polymorphism (Ohori, 1989b; Ohori, 1989a).

3.1 Type-frame semantics

One may think of a frame model as set-theoretic version of a cartesian closed cat-
egory. That is, it provides “objects” (i.e., Dτ for each simple type τ) and axioms
of representability and extensionality characterizing functions from objects to ob-
jects in terms of an application operator, •. In this article, each simple type model
Dτ is presumed to be built from sets with additional structure. We write |Dτ | for
the underlying set of Dτ . We refer to Dτ as a frame object and to |Dτ | as its
frame set.

Definition 1
A frame is a pair 〈D, •〉 where

1. D = {Dτ | τ ∈ Type & |Dτ | �= ∅}
2. • is a family of operations •τ1τ2 ∈ |D(τ1→τ2)|→|Dτ1 |→|Dτ2 |

Definition 2
The set function φ : |Dτ1 |→|Dτ2 | is representable if

∃ f ∈ |D(τ1→τ2)| s.t. φ(d) = f •τ1τ2 d, ∀d ∈ |Dτ1 |

Definition 3
〈D, •〉 is extensional if, for all d ∈ |Dτ1|, f, g ∈ |D(τ1→τ2)|,

f •τ1τ2 d = g •τ1τ2 d ⇒ f = g

Definition 4
A value environment ρ is compatible with a (ground) type environment, A, if

∀x. x ∈ dom(ρ)⇒ ρ x ∈ |Dτ |, where (x::τ) ∈ A
The compatibility relation is designated by A |= ρ. The set of value environments
compatible with A is designated Env(A).

Definition 5
[Environment Model Condition]
Let 〈D, •〉 be any frame, λ→ be the simply-typed lambda calculus and ρ a value
environment such that A |= ρ. Then, the map D[[−]] ∈ λ→→Env→ (

⋃ |Dτ |) obeys

Journal of Functional Programming 7

the environment model condition if the following equations hold:

D[[A
 x : τ]]ρ = ρ x

D[[A
 λx::τ1.M : τ1→τ2]]ρ = f

where f ∈ |Dτ1→τ2 | such that f is unique and for all d ∈ |Dτ1 |,
f • d = D[[M]]ρ[x �→ d]

D[[A
 (M N) : τ]]ρ = (D[[A
M : τ ′→τ]]ρ) • (D[[A
 N : τ]]ρ)

For any extensional frame D, the above equations induce a model of the simply-
typed lambda calculus (Gunter, 1992; Mitchell, 2000).

3.2 A simple model of ML polymorphism

The Girard-Reynolds calculus (alternately referred to as System F (Girard, 1972)
and the polymorphic lambda calculus (Reynolds, 1974)) contains abstraction and
application over types as well as over values. As such, it is sometimes referred
to as a second-order lambda calculus. Denotational models of second-order lambda
calculi exist (e.g., the PER model described in (Girard, 1989)). Such models provide
one technique for specifying Haskell and ML polymorphism. Harper and Mitchell
take this approach (Harper & Mitchell, 1993; Mitchell & Harper, 1988) for the core
of Standard ML called core-ML. They translate a polymorphic core-ML term (i.e.,
one without type abstraction or application) into a second-order core-XML term
(i.e., one with type abstraction or application). A core-ML term is then modeled
by the denotation of its translation in an appropriate model of the second-order
lambda calculus, core-XML.

ML polymorphism4 is considerably more restrictive than the polymorphism ex-
pressible in a second-order lambda calculus; its types are of the form ∀α0 . . . αn.σ

for a quantifier-free type scheme σ. Although outside the scope of this article, it
appears that the Ohori model of polymorphism is adequate to the description of
type classes in Haskell. However, we shall not consider type classes further in this
article as they are not relevant to the issue we focus on here: the fine control of
demand in Haskell.

Because of its restrictiveness relative to the Girard-Reynolds calculus, it is pos-
sible to give a predicative semantics to ML polymorphism (Ohori, 1989b; Ohori,
1989a) that is a conservative extension to the frame semantics of the simply-typed
lambda calculus outlined in Section 3.1 above. Ohori’s model of ML polymorphism
is particularly appealing because of its simplicity. It explains ML polymorphism
in terms of simpler, less expressive things (such as the frame semantics of the
simply-typed lambda calculus) rather than in terms of inherently richer and more
expressive things (such as the semantics of the second-order lambda calculus).

We adopt Ohori’s simple model of ML polymorphism (Ohori, 1989b; Ohori,
1989a) as part of the foundation for the Haskell fragment here. This model defines

4 Following Ohori(Ohori, 1989b; Ohori, 1989a), we shall refer to the variety of polymorphism
occuring in Haskell and ML as ML polymorphism. Both languages use varieties of Hindley-
Milner polymorphism (Hindley, 1969; Milner, 1978).

8 William L. Harrison and Richard B. Kieburtz

the meaning of polymorphic terms as type-indexed denotations of their ground in-
stances (or typings as Ohori calls them). This approach to polymorphism factors
the language specification into two parts: the specification of polymorphic terms
(in Definition 16) and of their simply-typed instances (in Definitions 17 and 18).

Definition 6
A closed ML-polymorphic type (∀α1 . . . αn.σ) is modeled by the type-indexed set
of frame sets:

{|Dτ | | τ = σ[α1/τ1, . . . , αn/τn], τi ∈ Type, {α1, . . . , αn} = TV(σ)}
where Type is the set of all simple (i.e., ground) types and TV(σ) are the free type
variables of σ.

Each core-ML polymorphic term is defined as the set of denotations of its ground
instances, and these ground instances may be given a frame semantics in precisely
the same manner as a simply-typed lambda calculus. Details of this model will be
spelled out in greater detail in Section 4.2 below.

4 Formal semantics of a Haskell fragment

This section presents the static and denotational semantics of the Haskell fragment.
These are abstracted from the denotational semantics of Haskell (Harrison et al.,
2002) and are, for the most part, entirely conventional. The denotational semantics
for the Haskell fragment is based on an extension to the type frames semantics of
the simply-typed lambda calculus.

Because the focus of this article concerns the consequences of pattern-matching
within the context of the Haskell language, much of this section is devoted to the
necessary structure for modeling patterns. As the semantics developed here is a
typed semantics (i.e., the terms defined denotationally are derivable typing judg-
ments), we give a type system for patterns. This distinguishes our approach some-
what from other treatments of Haskell (Peyton Jones, 2003; Jones, 1999; Thomp-
son, 1999; Hudak, 2000; Faxen, 2002) where patterns are not treated as first-class
entities.

The static semantics for patterns associates a pattern with a type of the form
σ→�, where σ is a conventional type scheme (i.e., constructed from type variables,
type constants, +, ×,→, and constructors arising from data type declarations) and
� is a record type. We introduce record types to capture statically the notion that a
pattern produces a finite set of typed variable bindings when successfully matched
against a value. Please note that incorporating record types in the semantic domain
does not imply extending Haskell with record types, expressions and values.

As noted in Section 3.1, frames for the simply-typed lambda calculus consist of a
pair, 〈D, •〉, where D is a set containing the denotations of types and • is an appli-
cation operator. The Haskell fragment presented here, being more expressive than
the simply-typed lambda calculus, requires more structure to model with frames.
We extend the notion of a type frame with structure including a partial order on
the elements of frame sets, pointedness of frame objects, continuous functions that

Journal of Functional Programming 9

preserve order and limits, embedding-projection pairs for data types, the Maybe
monad, and currying and uncurrying operations on functions. Formally, for the
Haskell fragment, a frame is the tuple:

〈D, •,�,,⊥, (−)�, (−)�, c, c−1, cM , Just,Nothing, >>=, return, lift,⊕, �, [] 〉
Here, �, , and ⊥ are introduced to impose a pointed cpo structure on each of the
frame objects Dτ ∈ D. Structure for embedding-projection pairs for data types, c

and c−1, represent the constructors introduced in data type declarations as well as
the projections from values in data types. Curry (−)� and uncurry (−)� operators
are necessary to accomodate the view of “data constructors as functions” in Haskell.
The Maybe monad and related structure are introduced to model pattern-matching;
the structures

cM , Just,Nothing, >>=, return, lift,⊕
are used for this purpose (and are described in detail below). Finally, control oper-
ators for both Kleisli composition (�) and alternation ([]) are introduced to model
patterns and case expressions.

Such structures are the “bricks and mortar” of conventional denotational se-
mantics and, in a domain-theoretic treatment, would be represented within some
concrete domain structure. The frame semantics approach taken here axiomatizes
this additional structure. These extended frames may be thought of as an ab-
straction of the cpo semantics of types which is the foundation of the semantics
of functional programming languages (Schmidt, 1986; Gunter, 1992). The type
frames for the Haskell fragment contain abstract operators corresponding to the
concrete constructions (e.g., pointedness, embedding-projection pairs, etc.) that
occur within domain theory, and semantically necessary properties of these ab-
stract operators (e.g., extensionality, etc.) are characterized axiomatically. Suitable
concrete, domain-theoretic representations of the extra structure in the frame se-
mantics below have been suggested by several authors (Gunter, 1992; Schmidt,
1986; Mitchell, 2000; MacQueen et al., 1984; Smyth & Plotkin, 1982).

Section 4.1 presents the type system for the Haskell fragment. Section 4.2 reviews
the necessary definitions for relating polymorphic terms to their ground instances—
these come directly from (Ohori, 1989b; Ohori, 1989a) and our treatment follows
Ohori’s closely. Section 4.2 defines the semantics of the polymorphic part of the
Haskell fragment. The next two sections consider the frame semantics of the ground
instances of the fragment. Section 4.3 presents the necessary extensions to the basic
frame structure from Section 3.1 and Section 4.4 presents the semantic equations
themselves.

4.1 The Haskell fragment

This section presents the type system for the Haskell fragment. The pattern class
P does not include all varieties of Haskell patterns (e.g., “as” patterns or “n + k”
patterns), while E includes case expressions without guards. These features have
been omitted in the present treatment, however, as they are not relevant to Haskell’s

10 William L. Harrison and Richard B. Kieburtz

fine control of demand. In this section, we will write terms using Haskell’s concrete
syntax.

In Definitions 7 and 8 below, we formulate a type system for the Haskell frag-
ment. The type system for this fragment is, except for the treatment of patterns,
a conventional type system for implicit polymorphism. A typing judgment for an
expression e is of the form Γ
 e ::σ, where any free variables occurring in the type
scheme σ are implicitly quantified. To give a typed semantics for Haskell patterns,
we must first give formal type rules for patterns. We shall use record types in the
type rules for Haskell patterns. For these, we turn to Standard ML (Milner et al.,
1997) for inspiration. Patterns are given types of the form (σ → �) where � ranges
over record types.

Definition 7
[Type language of the Haskell fragment]

Below, b ranges over base types, α ranges over type variables, and T designates
a type constructor assumed to be of arity n. There are simple types (ranged over
by τ and referred to only as types) and type schemes (ranged over by σ). When a
type scheme us used in a judgment, its free type variables are implicitly quantified.

Simple Types τ ∈ Type ::= b | τ → τ | T τ . . . τ︸ ︷︷ ︸
n

| ζ

Type Schemes σ ∈ TypSch ::= α | b | σ → σ | T σ . . . σ︸ ︷︷ ︸
n

| �

Simple record types ζ ∈ sty ::= 〈[styrow]〉
Polymorphic record types � ∈ pty ::= 〈[ptyrow]〉
Simple type rows styrow ::= lab::τ [,styrow]
Polymorphic type rows ptyrow ::= lab::σ [,ptyrow]

Definition 8
[Type Rules for Haskell Fragment] In the rules below, the notation Γx designates a
type environment derived from Γ by removing any type binding for the variable x,
should such exist in Γ.

Standard Rules:

(x::σ) ∈ Γ
Γ
 x :: σ

Γ
 e ::σ′→σ Γ
 f :: σ′

Γ
 ef :: σ
Γx, x::σ′
 e :: σ
Γ
 λx.e :: σ′→σ

Γ
 e ::σ′ Γ
pat pi :: σ′→�i Γ + �i
 ei ::σ
Γ
 case e of {p1→e1; . . . ; pn→en} ::σ

where
Γ + 〈x1::σ1, . . . , xk::σk〉 = Γ ∪ {x1::σ1, . . . , xk::σk}

Patterns:

Γ, x::σ
pat x :: σ → 〈x::σ〉
Γ
pat p :: σ → �

Γ
pat ∼p :: σ → � Γ
pat :: α→ 〈〉
(C::σ1→ . . .→σn→σ) ∈ Γ Γ
pat pi :: σi → �i (1 ≤ i ≤ n)

Γ
pat (C p1 . . . pn) :: σ → (�1 ⊗ . . .⊗ �n)

Journal of Functional Programming 11

Definitions 9-13 present the necessary technical vocabulary concerning type deriva-
tions for Ohori’s model of polymorphism. An effort has been made to use Ohori’s
original terminology (Ohori, 1989b; Ohori, 1989a) whenever possible. None of these
definitions are particularly surprising, although it is worth noting that, in our type
language, free type variables within type schemes are implicitly quantified. Defini-
tion 13 presents the definition of what Ohori refers to as a typing scheme. This is,
in more standard terminology, just a polymorphic term derivable in the type rules
of Definition 8.

Definition 9
A ground type assignment A is a mapping from a finite set of term variables to
Type.

Definition 10
A type scheme assignment Γ is a mapping from a finite set of term variables to
TypSch.

Definition 11
A substitution is a function θ from type variables to TypSch s.t. θ α �= α for only
finitely-many type variables α. We designate the natural extension of a substitution
θ to a map from TypSch to TypSch by θ∗.

Definition 12
A ground typing is a judgment, A
 e :: τ , derivable in the rules of Definition 8.

The Haskell terms defined by the semantics are precisely the typing schemes
defined in Definition 13.

Definition 13
A formula, Γ
 e ::σ, is a typing scheme if, for all ground instances (A, τ) of
(Γ, σ), A
 e :: τ is a ground typing. Furthermore, a typing scheme, Γ
 e ::σ, is
polymorphic if σ contains a type variable.

4.2 Simple model of polymorphism for the Haskell fragment

Ohori’s simple model of ML polymorphism defines the meaning of a polymorphic
expression in terms of the type-indexed sets of denotations of its ground instances.
It is a typed semantics, meaning that the denotations are given for derivable typing
judgments of terms. We adopt this model of polymorphism for the Haskell fragment
considered here.

Before delving into the technical details, we first present an intuitive example
to motivate the approach. Consider the polymorphic term (∅
 λx.x::α→α). Any
ground instance of this term (e.g., ∅
 λx.x::Int→ Int) has a meaning within an
appropriate frame D. Within such a D, if the elements of |Dτ→τ ′| are actually
functions from |Dτ | to |Dτ ′ |, then the meaning of each of these instances is simply
the identity function at its type, idDτ ∈ |Dτ→τ |. According to the simple model of
polymorphism, the meaning of (∅
 λx.x::α→α) is just the set:

{(τ→τ, idDτ) | τ ∈ Type}

12 William L. Harrison and Richard B. Kieburtz

This example illustrates the structure of Ohori’s model: a semantics of the ground
typings of a language is extended conservatively to polymorphic terms. Extending
the semantics of ground terms requires two additional data. Given a polymorphic
term (Γ
 e::σ), one must determine the appropriate ground type assignments A
and ground types τ corresponding to Γ and σ, respectively. Definition 14 defines
the set of ground type assignments compatible with a type assignment Γ that may
contain free type variables, while Definition 15 specifies the set of ground types
at which instances of a polymorphic term are defined. Definition 16 conservatively
extends a semantics for the ground typings of the Haskell fragment to a semantics
for polymorphic terms in the fragment.

Definition 14
The set of admissible type assignments under Γ is:

TA(Γ) = {A | ∃ θ : FV (Γ)→Type. A = θ∗ ◦ Γ }

Intuitively, A ∈ TA(Γ) means that bindings in A are ground instances of the
corresponding bindings in Γ. For example, suppose

Γ = (x �→ (α→ Int)), A0(x) = Int→ Int and A1(s) = Char × Int

Then A0 ∈ TA(Γ) but A1 �∈ TA(Γ).

Definition 15
The set of types at which the polymorphic term (Γ
 e :: σ) is defined is:

Gr(Γ
 e ::σ) ⊆ (dom(Γ)→Type)× Type

Gr(Γ
 e ::σ) = {(A, τ) | ∃ θ : FV (Γ)→Type. A = θ∗ ◦ Γ, τ = θ∗σ}

Several facts account for the well-definedness of Definition 16. Firstly, Gr(Γ

e ::σ) may be considered as a mapping from ground type environments to Type

because, for any derivable Γ
 e ::σ, there is a unique substitution θ : FV (Γ)→
Type such that θ∗Γ = A for any A ∈ dom(Gr(Γ
 e :: σ)), where dom(−) is simply
the first projection on a set of pairs. If (A, τ), (A, τ ′) ∈ Gr(Γ
 e :: σ), then τ =
θ∗σ = τ ′. Secondly, we note that dom(Gr(Γ
 e ::σ)) = TA(Γ). And finally, we
note that, if Γ
 e ::σ is derivable, then so is any ground instance of it A
 e :: τ
(and (A, τ) ∈ Gr(Γ
 e ::σ)).

Definition 16
[Semantics of The Haskell Fragment] Let D be any Haskell frame, (Γ
 e ::σ) be
a polymorphic term in the Haskell fragment, A ∈ TA(Γ), and ρ ∈ Env(A), then
the following equation defines the semantics of polymorphic terms of the Haskell
fragment as sets of type-indexed denotations of its ground instances:

D[[Γ
 e ::σ]]A ρ = { (τ,D[[A
 e :: τ]] ρ) | τ = (Gr(Γ
 e :: σ))A}
The denotational definition of ground typings D[[A
 e :: τ]] is presented in Sec-
tion 4.4.

Journal of Functional Programming 13

4.3 Haskell frames

Recall that a frame for the Haskell fragment is a tuple:

〈D, •,�,,⊥, (−)�, (−)�, c, c−1, cM , Just,Nothing, >>=, return, lift,⊕, �, [] 〉
together with equations specifying properties of the elements. This section considers
each of these additional structures in turn along with their properties.

4.3.1 CPO structure

The starting point for the frame semantics of Haskell is the cpo semantics of func-
tional programming languages (Schmidt, 1986; Gunter, 1992; Mitchell, 2000). We
assume that (ground) types are complete partial orders and that programs are
continuous functions between them. A complete partial order (cpo) is a set S

with a least element, ⊥, and a partial order � such that every ascending chain,
{xi ∈ S | xi � xi+1}, possesses a least upper bound in S,

⊔
xi. A function f between

cpos C and D is continuous if it is monotonic (i.e., x �C y implies fx �D fy, for all
x, y ∈ C) and it preserves least upper bounds of chains (i.e., f(

⊔
ci) =

⊔
(fci)). The

cpo semantics of the typed λ-calculus with recursion are frame models (Mitchell,
2000).

4.3.2 Pointedness in Haskell

Frames corresponding to Haskell types are necessarily pointed (i.e., they have a
distinguished least element ⊥) because of the need to solve recursive equations
at all types. But Haskell’s “lazy” pattern matching and the presence of the seq
operator in the language puts further conditions on the bottom element of each
frame. In the semantics of functional programming languages, the bottom elements
in domains corresponding to constructed types (T τ1 . . . τn) (for type constructor
T) are typically defined in terms of the domains denoting τ1, . . . , τn. That is, rather
than introducing a new element, one constructs the bottom element ⊥(Tτ1...τn) from
the existing bottom elements ⊥τ1, . . ., ⊥τn . For example, logical choices for ⊥ for
the arrow, product, and list type constructors are:

⊥(τ→τ ′) = λi. ⊥τ ′ ⊥(τ×τ ′) = (⊥τ ,⊥τ ′) ⊥[τ] = (⊥τ :⊥[τ]) (1)

The operator seq::a→b→b, one will recall, is strict in its first argument, so that
(seq e i) will be denoted by ⊥τ ′ , if i::τ ′ and e is a Haskell term denoting ⊥τ . Exam-
ples of terms that denote bottom are the Haskell terms undefined, (error " . . ."),
and any non-terminating Haskell expression. Using seq, Haskell programs may dis-
tinguish bottom-denoting terms from the definitions given in (1) above. Examples
illustrating this distinction are presented in Table 1. For this example, we have
chosen to typify any ⊥-denoting Haskell expression by undefined. Evaluating pair1,
fun1, and intlist1 will all produce errors, because seq, being strict in its first ar-
gument, evaluates the expression undefined. Evaluating pair2, fun2, and intlist2
all produce the integer 1, because terms corresponding to (1)—pairBot, funBot,
and intlistBot—do not denote ⊥ in their respective types. Since pair1 �= pair2,

14 William L. Harrison and Richard B. Kieburtz

— ⊥-denoting Haskell terms
hPairBot :: (Int, Int)
hPairBot = undefined

hFunBot :: Int→Int
hFunBot = undefined

hIntListBot :: [Int]
hIntListBot = undefined

discern x = seq x 1

pair1 = discern hPairBot
pair2 = discern pairBot

— standard constructions of ⊥
pairBot :: (Int, Int)
pairBot = (undefined, undefined)

funBot :: Int→Int
funBot = λx.undefined

intlistBot :: [Int]
intlistBot = undefined::undefined

fun1 = discern hFunBot
fun2 = discern funBot
intlist1 = discern hIntListBot
intlist2 = discern intlistBot

Table 1. The Haskell programs in the right column correspond to the standard
domain-theoretic constructions of ⊥, while those in the left column use the ⊥-
denoting Haskell term “undefined.” The Haskell seq operator distinguishes the two.

fun1 �= fun2, and intlist1 �= intlist2, the standard domain constructions of ⊥ given
in (1) are untenable for the Haskell language.

A consequence of the inclusion of seq in Haskell is that we must provide axioms
specifying the difference between the constructions of (1) and the bottom element
in |Dτ |. In particular, each of the standard constructions in (1) must be strictly
above the bottom element in its frame:

⊥(τ×τ ′) � (⊥τ ,⊥τ ′)
⊥(τ→τ ′) � λx. ⊥τ ′

⊥[τ] � (⊥τ :⊥[τ])

Furthermore, there must be no elements “in between”:

x � (⊥τ ,⊥τ ′) ⇒ (x =⊥(τ×τ ′)) ∨ (x = (⊥τ ,⊥τ ′)), for all x ∈ |D(τ×τ ′)|
x � λx. ⊥τ ′ ⇒ (x =⊥(τ→τ ′)) ∨ (x = λx. ⊥τ ′), for all x ∈ |D(τ→τ ′)|
x � (⊥τ :⊥[τ]) ⇒ (x =⊥[τ]) ∨ (x = (⊥τ :⊥[τ])), for all x ∈ |D[τ]|

4.3.3 Currying and Uncurrying

We assume the existence of operators curry and uncurry:

()� ∈ |D(τ1×...×τn→τ)→(τ1→...→τn→τ)|
()� ∈ |D(τ1→...→τn→τ)→(τ1×...×τn→τ)|

The curry and uncurry operators in each frame obey the following equations:

(f �)� = f, for f ∈ |Dτ1→...→τn→τ |
(g�)� = g, for g ∈ |Dτ1×...×τn→τ |

Journal of Functional Programming 15

Only the curry operator is used explicitly in this article (to define Haskell con-
structors as curried functions), but the uncurry operator (−)� is needed for the
axiomatization of (−)�.

4.3.4 Haskell data types

Data types in Haskell may be recursive and this, combined with Haskell’s laziness,
allows for the construction of infinite data values. Pattern-matching in Haskell,
however, is based upon only a finite portion of a structured value in a data type.
While the semantic framework presented in this section allows for solution of the
recursive domain equations associated with data type declarations the issue of in-
finite data values is not germain to pattern-matching. To meet the goals of the
present article, we do not need to illustrate a model of recursive data types and
have therefore chosen to omit it.

In a Haskell data type declaration, a programmer can write strictness annotations
on the type arguments to constructors. For example, the data type declared by:

data Foo = S !Int Bool

has a single binary constructor that has a strictness annotation on its first argu-
ment. The function denoted by the constructor S is semantically equivalent to the
abstraction:

λx.λy.seq x (S x y)

Note that many Haskell programmers might call this function “strict in its first ar-
gument” meaning that the saturated application (S e1 e2) will denote ⊥ if e1 denotes
⊥. However, the use of the word “strict” to describe the constructor S conflicts with
the usual meaning of the term in denotational semantics (Gunter, 1992; Mitchell,
2000). Considered as a function, S being strict in its first argument would mean
that the following equation holds: S ⊥Int =⊥(Bool→Foo). Note however that (S ⊥Int)
is semantically equivalent to the abstraction, (λy.seq undefined (S undefined y)),
which is not denoted by ⊥(Bool→Foo) as noted in Section 4.3.2. The two notions of
strictness could not be distinguished if Haskell lacked the seq operator. We will refer
to a function f ∈ |Dτ1→...→τn→b| (where type b is a base type) as saturation strict
(or “sat-strict” for short) in its i-th argument, if (f • v1 . . . • vn) =⊥b whenever
vi =⊥τi.

4.3.5 Type frames for data constructors

Consider the Haskell data type declaration:

data T α1 . . . αn = . . . | (Ci σi,1 . . . σi,ki) | . . . (2)

where
⋃

FV (σi,j) ⊆ {α1, . . . , αn} . Following Definition 6, the denotation of this type
is a set of frame objects of the form D(T τ1...τn). What is the structure of these
D(T τ1...τn)? For each constructor Ci, we introduce the following family of functions

16 William L. Harrison and Richard B. Kieburtz

into the frame model:

ci ∈ |D(τi,1×...×τi,ki
)→(T τ1...τn)|

c−1
i ∈ |D(Tτ1...τn)→(τi,1×...×τi,ki

)|
Note that a Haskell constructor is a curried function corresponding to c�

i . Equations
(3) and (4) specify that ci and c−1

i form an embedding-projection pair (Gunter, 1992;
Mitchell, 2000):

c−1
i ◦ ci = idDτ1×...×τn

(3)

ci ◦ c−1
i � idDT (4)

c−1
i • (cj •
v) = ⊥τ1×...×τn (5)

In Equation (5), Cj is a T constructor distinct from Ci and cj is its corresponding
frame function. Let Si be the set of indices of arguments for constructor Ci that
are declared with the strictness annotation “!”. Then,

⊥T � ci • (vi,1, . . . , vi,ki) where vi,l ∈ |Dτi,l
| and (vl =⊥τi,l

⇔ l �∈ Si) (6)

⊥T = ci • (vi,1, . . . , vi,ki) where, for at least one l ∈ Si, vl =⊥τi,l
(7)

These equations determine when the bottom element in the data type T is separated
from the bottom elements of arguments of a constructor application and when
the bottom elements are coalesced. Note that, if Ci is declared without strictness
annotations, which is the default in a Haskell program, then (6) and (7) simplify
to:

⊥T � ci • (⊥τi,1 , . . . ,⊥τi,ki
)

4.3.6 Representing the Maybe monad in D
The semantics of Haskell pattern-matching will be presented as a computation in
the Maybe monad (Harrison et al., 2002). We must consider the representation of
such a monadic computation in the frame semantics. A computation in the Maybe

monad is coded in the data type whose Haskell declaration is:

data Maybe α = Just α | Nothing

Following Section 3.2, this polymorphic type is denoted by the following set:

{D(Maybe τ) | τ ∈ Type}
Furthermore, there are the families of functions corresponding to the Maybe con-
structors:

Justτ ∈ |Dτ→Maybe τ |
Just−1

τ ∈ |DMaybe τ→τ |
Nothingτ ∈ |DMaybe τ |

Because it is an essential part of the semantics of pattern-matching, we coin the
name purifyτ for Just−1

τ . It is so named because it projects a computation into a
pure value. The actions of purify is given by Equations (3) and (5) above:

purifyτ • (Justτ v) = v (for any v ∈ |Dτ |)
purifyτ •Nothingτ = ⊥τ

Journal of Functional Programming 17

Functions for the unit and bind of the Maybe monad—written as return and
(>>=) in concrete Haskell syntax—are also added. The syntax for the Maybe monad
within the Haskell frame mirrors the concrete syntax of Haskell, but the reader
should distinguish the two.

returnτ ∈ |Dτ→Maybe τ |
returnτ = Justτ

>>=τ,τ ′ ∈ |DMaybe τ→(τ→Maybe τ ′)→Maybe τ ′ |
(Justτ v) >>=τ,τ ′ f = f • v

Nothingτ >>=τ,τ ′ f = Nothingτ ′

The following three equations express the laws required of a monad. The par-
ticular formulation we use is sometimes refered to as the Kleisli formulation of
monads (Barr & Wells, 1990). The third equation specifies the transitivity of the
bind operation:

(>>=τ,τ ′ f) ◦ returnτ = f

(>>=τ,τ returnτ) = idMaybe τ

(>>=τ1,τ2g) ◦ (>>=τ0,τ1f) = >>=τ0,τ1((>>=τ1,τ2g) ◦ f)

Here, (>>=τ,τ ′ f) is a right section of the binary infix operator, >>=.
Furthermore, for a data type T , defined as above in (2), the projections associ-

ated with its constructors may be factored through a computational version of the
projection cM

i :

cM
i ∈ |D(Tτ1...τn)→Maybe(τi,1×...×τi,kn)|

cM
i • (ci • (vi,1, . . . , vi,ki)) = Just • (vi,1, . . . , vi,ki)

cM
i • (cj • (vj,1, . . . , v1,kj)) = Nothing (i �= j)

c−1
i = purify ◦ cM

i

4.3.7 Frame semantics of records

Records have a constructed bottom just as other data types do (see Section 4.3.2)
according to the pointwise ordering. We refer to the constructed bottom of ζ,
〈m0 =⊥t0 , . . . , mn =⊥tn〉, as 〈⊥〉ζ . We then define a function, liftζ , which plays
a crucial rôle in defining the meaning of the irrefutable pattern:

liftζ : |D(Maybeζ)|→|D(Maybeζ)|
liftζ Nothingζ = Justζ 〈⊥〉ζ
liftζ (Justζ r) = Justζ r

We require an operator to combine a tuple of records computed in the Maybe

monad into a computation of a single record. For every tuple of record types,
ζ1, . . . , ζn, with non-overlapping field names, we define the following operation.
Subscripts may be omitted when clear from context.

⊕ζ1×...×ζn : |D(Maybeζ1×...×Maybeζn)|→|DMaybe(ζ1⊗...⊗ζn)|

⊕ (m1, . . . , mn) =

{
Nothing(ζ1⊗...⊗ζn) if ∃i ∈ [1..n]. mi = Nothingζi

Just(ζ1⊗...⊗ζn)r if ∀i ∈ [1..n]. mi = Justζiri

where r is the record whose fields are: f = v ∈ r ⇔ ∃i ∈ [1..n]. f = v ∈ ri. When

18 William L. Harrison and Richard B. Kieburtz

applied to a tuple of record-typed computations in the Maybe monad, the operator
⊕ returns Nothing when any of the tuple components is Nothing.

4.3.8 Control Operators: Diagrammatic Kleisli (�) and Alternation ([])

For simple types τ , τ1, τ2, and τ3, the operators (�) and ([]) are defined by:

(�) : |D(τ1→Maybe τ2)|→|D(τ2→Maybe τ3)|→|D(τ1→Maybe τ3)|
f � g = λx.(f x) >>= g

([]) ∈ |D(Maybe τ)→(Maybe τ)→(Maybeτ)|
Nothingτ [] y = y

(Justτ v) [] y = Justτ v

4.4 Typed semantics for the simply-typed Haskell fragment

As noted in Section 4.2, the denotations of polymorphic terms we have chosen for
the Haskell fragment is a conservative extension of the semantics of ground terms.
This section presents a frame semantics for ground typings of the Haskell fragment.
Definitions 16, 17, and 18 constitute the semantics of the Haskell fragment. Please
note that we drop the “D” from the semantic function for [[−]] in the remainder of
the article.

Definition 17 (Typed Semantics for Patterns)
Let A
pat p :: τ → ζ be a derivable typing of pattern p, then the typed semantics
for the pattern fragment is:

[[A
pat p :: τ→ζ]] ∈ |Dτ→Maybe ζ |
Equations5 defining [[A
pat p :: τ → ζ]] are:

[[A �pat x :: τ → ζ]] = return 〈x = −〉
where 〈x = −〉 ∈ |Dτ→〈x::τ〉|

〈x = −〉 • v = 〈x = v〉
[[A �pat :: τ → ζ]] = return 〈−〉

where 〈−〉 ∈ |Dτ→〈〉|
〈−〉 • v = 〈〉

[[A �pat (C p1 . . . pn)::τ→ζ]] = cM � (return ◦ (m1×. . .×mn)) � ⊕
where f1×. . .×fn = λ(x1, . . . , xn).(f1 x1, . . . , fn xn)

mi = [[A �pat pi::τi→ζi]]

[[A �pat ∼p :: τ → ζ]] = liftζ ◦ [[A �pat p :: τ → ζ]]

Definition 18 (Typed Semantics of Ground Typings)

5 We remind the reader that Kleisli composition (�) is written diagrammatic order, while function
composition (◦) is in applicative order.

Journal of Functional Programming 19

LetA
 e :: τ be a derivable ground typing and ρ be a value environment compatible
with A; then the typed semantics for the expression fragment is:

[[A
 e :: τ]]ρ ∈ |Dτ |
The equations defining [[A
 e :: τ]] are:

[[A
 λx.e :: τ→τ ′]]ρ = f

where f • v = [[A, x::τ
 e :: τ ′]]ρ[x �→ v], for all v ∈ |Dτ |
[[A
 e1 e2 :: τ]]ρ = ([[A
 e1 :: τ ′→τ]]ρ) • ([[A
 e2 :: τ ′]]ρ)

[[A
 case e of {p1→e1; . . . ; pn→en} :: τ]]ρ = purify • ((m1 • ε) [] . . . [] (mn • ε))
where

ε = [[A
 e :: τ ′]]ρ
mi = [[A
pat pi :: τi→ζi]] � (λr. return([[A+ ζi
 ei :: τi]](ρ + r)))
ρ + 〈x1 =v1, . . . , xk =vk〉 = ρ[x1 �→ v1, . . . , xk �→ vk]
A+ 〈x1::τ1, . . . , xk::τk〉 = A ∪ {x1::τ1, . . . , xk::τk}

[[A
 undefined :: τ]]ρ = ⊥τ

5 Logic for the Haskell fragment

While the denotational semantics defines a meaning for expressions in terms of an
abstract model, a verification logic expresses static assertions about semantic prop-
erties of expressions. An assertion in P-logic takes the form of an n-ary predicate
applied to n terms. There is a distinguished predicate symbol (===) that denotes
semantic equality of terms. Reasoning in the logic is based upon a set of proof rules,
each relating a consequent assertion to a set of possibly simpler antecedents, called
the verification conditions for the consequent. If a rule is sound, the truth of its
verification conditions is a logically sufficient condition to assure the truth of its
consequent.

P-logic is useful both for equational reasoning about expressions in a Haskell
program and for reasoning about properties other than equality. Examples of such
properties are that an expression denotes a non-bottom value in its type, or that
a list-typed expression denotes a finite list, or that an Integer-typed expression
denotes a non-zero value.

In this section, our principal goal will be to give meaning to formulas of P-logic
by relating them to the formal semantics of the Haskell fragment. In particular, we
shall prove the soundness of some basic proof rules of P-logic by showing that the
logical implications stated by these rules are valid when formulas of the logic are
interpreted in a frame semantics for the Haskell fragment.

Formalizing the semantics of all of P-logic and proving soundness of its inference
rules is a formidable task, far too much to describe in a single journal article, and one
we have not yet completed. P-logic has many predicate forms, including recursively-
defined predicates, predicates that express properties of monadic computations and

20 William L. Harrison and Richard B. Kieburtz

predicates derived from sections of boolean operators, that are not mentioned here.
Here, we have focused on formalizing an essential core of P-logic, limiting the scope
to predicates that assert elementary properties of expressions in the core Haskell
fragment.

We describe here only unary predicates in P-logic. The treatment of multi-place
predicates (including equality) presents no fundamental difficulty but the formal
notation needed to express the semantics of multi-place predicates is necessarily
heavier.

A unary predicate P :: Pred τ characterizes a set of terms of type τ . A slogan
to keep in mind is that unary predicates refine types. The typing of a predicate
formula in a simple typing environment, A, is derived from the typings of term
constants and data constructors that occur in the formula. Predicates, like terms,
may be polymorphically typed. In particular, the predicate constant, Univ, has the
universal type Pred α, where α is a free type variable.

Informally, a well-typed term satisfies a compatibly-typed predicate if the deno-
tation of the term belongs to the set denoted by the predicate. We shall formalize
this notion in section 5.6. We write e :: τ ::: P for the assertion that a term e

satisfies predicate P at type τ . Often, explicit typing will be omitted when stating
rules of P-logic, as suitable, generic types can be inferred from contexts.

Because function and data constructor applications are non-strict by default in
Haskell’s evaluation semantics, two notions of the strength of a predicate are sen-
sible. The interpretation of a predicate may be explicitly restricted by prefixing it
with the modal operator ($), to designate the strong modality of P-logic. A strong
predicate, $P :: Pred τ , is satisfied by a term, e :: τ , in value environment ρ if both
e satisfies P and in addition, the denotation of e is not the bottom element in Dτ .
By convention, a predicate is interpreted in the weak modality if it is not explicitly
strengthened.

In this section we give a brief introduction to the fragment of P-logic that is
relevant to pattern-matching in Haskell. The rules have been expressed in terms
of Haskell’s surface syntax insofar as possible. However, to express logical rules
involving patterns we shall employ some algorithms that are more clearly written
using abstract syntax for Haskell expressions. In particular, strictness annotations
that may accompany the declaration of a data constructor are not apparent in
the concrete syntax of a constructor application. The abstract syntax for a data
constructor (see Figure 1) manifests its strictness properties.

5.1 Predicates in P-logic

Atomic, unary predicates include the predicate constants, Univ and UnDef, which
are respectively satisfied by all terms and by only those terms whose denotation is
bottom.

There are two principal ways that compound predicates are formed in P-logic.

1. The data constructors declared for data types in a Haskell program are im-
plicitly “lifted” to act as predicate constructors in P-logic. For example, in

Journal of Functional Programming 21

 Univ :: Pred α
 UnDef :: Pred α

 P1 :: Pred σ1 · · ·
 Pk :: Pred σk

C(k) :: σ1 → · · · → σk → σ
 C(k) P1 · · ·Pk :: Pred σ

 P :: Pred σ1
 Q :: Pred σ2

 P → Q :: Pred (σ1 → σ2)

 P :: Pred σ

 $P :: Pred σ

Fig. 2. Predicate typing rules

the context of a program, the list constructor (:) combines an expression h of
type a and an expression t of type [a] into a new expression (h : t) of type
[a]. In the context of a formula, the same constructor combines a predicate
P and a predicate Q into a new predicate, (P : Q). This predicate is satisfied
by a Haskell expression that normalizes to a term of the form (h : t) and
whose component expressions satisfy the assertions h ::: P and t ::: Q. The
default mode of interpretation of the component predicates is weak because
the semantics of the data constructor (:) does not require evaluation of its
arguments.

2. The “arrow” predicate constructor is used to compose predicates that express
properties of functions. An arrow predicate P → Q is satisfied by a function-
typed expression, e, if given any argument expression e′ that satisfies P , the
application (e e′) satisfies Q. We refer to P as the domain predicate and Q as
the codomain predicate of the arrow predicate, P → Q.
As will be seen in Section 5.4.3, the individual branches of a case expression
are logically characterized with arrow predicates of the form P → Maybe Q,
where the data constructors in the Maybe data type code the success or failure
of a match on the pattern of a case branch.

Figure 2 gives typing rules for predicates. Figure 3 contains a Haskell definition
of the abstract syntax for the P-logic predicate language.

5.2 Judgment forms

A judgment form in P-logic is a relation of three components:

• a typing environment, Γ;
• a list of zero or more assertions, Π, whose conjunction is an assumption sup-

porting the judgment;
• a list of zero or more assertions, ∆, whose disjunction constitutes the conclu-

sion of the judgment.

A judgment form is written in sequent notation as Γ; Π
P ∆. When the typing
environment is superfluous, as when unambiguous (although possibly polymorphic)
types of expressions and predicates can be inferred from their structure, we shall
omit the typing environment from the sequent notation, writing just Π
P ∆.

22 William L. Harrison and Richard B. Kieburtz

data Pr = Univ {- the Universal predicate -}
| UnDef {- the Undefined predicate -}
| ConPred Name [Pr] {- pattern predicate -}
| Strong Pr {- strengthened predicate -}
| PredVar Name {- predicate variable -}
| PArrow Pr Pr {- arrow predicates -}
| Pneg Pr {- negated predicate -}

Fig. 3. Abstract syntax of predicates as a Haskell data type

For example, we can express a property of the function map, defined in Haskell’s
standard prelude, with the sequent

f ::: $(P → Q)
P map f ::: $($[P]→ $[Q])

In this sequent, the function symbol, f , is assumed to have a strong arrow property;
that is, f denotes a partial function from arguments with property P to results with
property Q. (Recall that the bottom element of an arrow type in Haskell is distinct
from those that represent partial functions.) The conclusion of the sequent asserts
that (map f) also denotes a function which, when applied to a normal6 list whose
elements have the property P , yields a normal list whose elements have the property
Q. A judgment formed with unary predicates resembles a typing judgment; as noted,
unary predicates refine types.

5.3 Inference rules for properties of the Haskell fragment

Inference rules of P-logic are written as relations among judgment forms. A rule is
a relation between zero or more antecedents and a single consequent judgment. In
sequent calculus style, each term-specific rule introduces a property associated with
a particular term construction into the consequent judgment. A rule may introduce
such a property either on the left or on the right of the entailment symbol (
P) in
the consequent. A right introduction rule concludes a property of the constructed
term, while a left introduction rule supports a conclusion drawn from assumptions
about the specified term construction. Left introduction rules in sequent calculus
are used to draw inferences similar to those made with so-called elimination rules
of a natural deduction style logic.

5.3.1 Abstraction and function application

A predicate P → Q is satisfied by a function-typed term whose application to an
argument with property P gives a result with property Q. The following rule asserts
an arrow property of a Haskell term formed by explicit abstraction:

6 We say that the denotation of an expression is normal if it is not the bottom element in its
type.

Journal of Functional Programming 23

Γ[x :: τ1]; Π, x ::: P
P e :: τ2 ::: Q

Γ; Π
P (λx -> e) :: (τ1 → τ2) ::: $(P → Q)
(8)

The typing of terms in this rule has been shown explicitly.
As an illustration, we might apply Rule (8) to verify a property of an abstraction

that gives a successor function at type Integer. An instance of the rule (in informal
notation) would be

x :: Integer; x ≥ 0
P (1 + x) > 0

P (λ(x :: Integer) -> 1 + x) ::: (!(≥ 0)→ !(> 0))

where !(> 0) denotes a right section predicate constructed from the binary inequal-
ity operator, (>). The antecedent clause in this example is a verification condition
that might be discharged by applying a rule that expresses a property of integer
arithmetic. We have not stated any such theory-specific rules in this paper.

Rule (8) also accommodates the strictness properties of abstractions as they
are defined in Haskell. An unstrengthened domain predicate, P , does not assert
that the argument of an abstraction has a normal value. A property $(P → Q)
may therefore be satisfied by an abstraction that is not strict in its argument. To
express a stronger property, appropriate to an abstraction whose body is strict in the
abstracted variable, we could assume an explicitly strengthened domain predicate,
$P ′. In that case, the consequent property of the strict abstraction would become
$($P ′ → Q). If, in addition, we wanted to assert that the function defined by
the abstraction is total, the codomain predicate in the property would also be
strengthened, as in $($P ′ → $Q′).

We don’t know of a useful rule introducing an assumed property of an abstraction
on the left side of a sequent, but a rule that is sometimes useful for left introduction
of an arrow property of a Haskell term is:

Π
P e′ ::: P e e′ ::: Q
P ∆
Π, e ::: $(P → Q)
P ∆

(9)

Notice that the assumption in the consequent clause cannot be weakened to e :::
P → Q, as the rule would then be unsound in the case that Q was substituted by
a strengthened predicate.

5.3.2 Application

Rule (10) is a right-introduction rule for properties of function application. No-
tice that the assumption of a strong arrow property of the rator term in the first
antecedent is necessary. If the arrow property were only weakly assumed, then it
would not be valid to substitute the predicate variable Q by a strong property.

Π
P e1 ::: $(P → Q) Π
P e2 ::: P

Π
P e1 e2 ::: Q
(10)

A left introduction rule for application is:

24 William L. Harrison and Richard B. Kieburtz

e ::: P → $Q
P ∆
x ::: P, e x ::: $Q
P ∆

where x is a variable and
x has no free occurrence in e.

(11)

In this rule, which is dual to Rule (8), the restriction of the argument term, x, to
a variable ensures that the property assumed of the application in the consequent
is valid for any argument that satisfies the domain predicate, P .

5.3.3 Constructor application

Rules for constructor application are derived from a Haskell data type declaration.
A constructor application is lifted to a predicate constructor application by the
function conPred, given in Figure 4, where ts is a list of strictness-type pairs. Each
listed pair gives the sat-strictness of the constructor (either Lazy or Strict) and the
type expected in the corresponding argument position. When a predicate construc-
tor lifted from a data constructor is applied to a predicate argument, the resulting
predicate is strong if and only if at every argument position declared sat-strict for
the data constructor, a strong argument predicate is given. If the declaration of
the data constructor did not specify sat-strictness in any argument position, then
by default the lifted predicate is strong. A strong predicate formula, $C P1 . . . Pk,
where C is a data constructor of arity k, is satisfied by a term with a normal form
C e1 . . . ek if each of the ej satisfies the corresponding predicate Pj .

Rule schemes for properties of saturated applications of data constructors are
given below. Suppose Constr C [(s1, σ1), . . . , (sk, σk)] ∈ ΣT α1...αn . A rule scheme
that specifies properties of expressions constructed with C is:

Π �P e1 ::: P1 · · · Π �P ek ::: Pk

Π �P C e1 . . . ek ::: conPred (Constr C [(s1, σ1), . . . , (sk, σk)]) [P1 . . . Pk]
(0 ≤ k) (12)

Here, the consequent of the rule is expressed in terms of a function of the abstract
syntax representation of a constructor, because the surface syntax does not carry
sat-strictness and arity attributes of the constructor that are extracted from its
declaration. Although we have tried to present rules informally in terms of the
surface syntax of terms and predicates whenever possible, the formal expression of
this rule requires abstract syntax.

Notice from its definition in Figure 4 that conPred calculates whether a con-
structed property is or is not strong. Its strength depends upon the sat-strictness
attributes declared for a data constructor, C, and whether properties of its non-
sat-strict arguments are asserted strongly.

A second rule satisfied by terms constructed with C is that for each data con-
structor, B, which is distinct from C in the same data type,

Π
P C e1 . . . ek ::: ¬B Univ . . .Univ︸ ︷︷ ︸
arity of B

(13)

Journal of Functional Programming 25

conPred :: E → [Pr]→ Pr
conPred (Constr n ts) prs =

let prs′ = take (length ts) prs
s = and (map (\(pr, l)→ isStrong pr || l == Lazy)

(zip prs′ (map fst ts))
where isStrong (Strong) = True

isStrong = False
in if s then Strong (ConPred n prs′)

else ConPred n prs′

Fig. 4. Lifting constructor applications to predicates

Rule (13) asserts that terms constructed with different data constructors are se-
mantically distinct.

There is a dual to rule (12) that expresses properties entailed by an assumed prop-
erty of a constructed term. As before, assume C to be a k-place data constructor.
Then,

Π, e1 ::: P1 · · · ek ::: Pk
P ∆
Π, C e1 . . . ek ::: $C P1 · · ·Pk
P ∆

(0 ≤ k) (14)

This rule tells us that any conclusion supported by properties assumed of terms
e1, . . . , ek is also supported by assuming the constructor property of the constructed
term, C e1 · · · ek ::: $C P1 · · ·Pk. Rules (12) and (14) together imply the embedding-
projection property of data constructors expressed by equations (3–4).

5.4 Pattern matching

Pattern-matching, as a language feature, has the attractive aspect that it offers an
intuitive interpretation of its surface syntax. However, formal reasoning about pat-
terns is complicated by the fact that control and binding aspects occur together,
and binding may encompass several variables at once. This section develops al-
gorithms for deriving predicates from Haskell patterns. The derivation associates
predicate arguments with the variables that occur in a pattern, so that a derived
pattern predicate characterizes both the control aspect of a pattern and required
properties of subterms of a matching term.

5.4.1 Pattern predicates

Because patterns may be nested to arbitrary depths, it is inconvenient to use the
syntax of patterns directly in formulating proof rules. Instead, we shall define an
algorithmic calculation of a syntactically flattened representation for patterns to
support a presentation of pattern predicates in rule schemes. This will make it easier
to account for predicate components associated with particular pattern variables
bound in a nested pattern.

Definition 19 (Pattern predicate)

26 William L. Harrison and Richard B. Kieburtz

The pattern predicate formed by instantiating a pattern relative to a predicate
environment is calculated by the inductively-defined Haskell function pi7 given
in Figure 5. We use the notation π(p) in Rules (15–18) as shorthand for pi p to
designate a “flattened” pattern predicate constructor. A rule scheme is specified
with pi, can be directly implemented as a rule generator, yielding a distinct rule for
each instance of a pattern or patterns in terms to which it is applied.

Intuitively, pi is a function that interprets an abstract syntax term that represents
a pattern, substituting a predicate for each binding occurrence of a variable in the
pattern. The predicates to be substituted are drawn from a list given as the second
argument to pi. The calculation yields a new predicate, which we refer to as a
pattern predicate. However, calculation of a pattern predicate from a pattern is not
simply a matter of substituting predicates for term variables. To obtain a predicate
that characterizes terms matching the pattern, it is also necessary to interpret
irrefutable predicates and the strictness annotations embedded in the signatures of
data constructors.

When an irrefutable pattern occurs as the first argument of pi and the entire list of
predicates that would replace variables in its fringe are Univ, the pattern predicate
returned is Univ, regardless of the substructure of the irrefutable pattern. Otherwise,
the “skeleton” of the subpattern is fully elaborated by pi (p). In consequence, if an
instance of rule (15) has non-universal predicates among its hypotheses, then the
pattern predicate in its conclusion will characterize a normal pattern match.

As an illustration, three pattern predicates that may be calculated from the
patterns given as examples of Section 2.2.6 are given below. For easier readability,
the patterns and the resulting pattern predicates are shown in concrete, rather than
abstract syntax representations.

π(T (S x) y) Univ Univ = $(T $(S Univ) Univ)
π(T ∼(S x) y) Univ Univ = $(T Univ Univ)

π(T ∼(S x) y) $Univ Univ = $(T $(S $Univ) Univ)

Let us focus attention on the predicates given as arguments to the pattern con-
structor in the left-hand side of each of the equations above. In the first equation,
both argument predicates are Univ, which is satisfied by any term (including the
term undefined) that might be bound to the variables x and y in a pattern match.
Nevertheless, the fact that the sub-pattern S x has a data constructor at its head
mandates that in any term on which a match is to succeed, the first argument of the
data constructor T must have a normal value. Hence, the pattern predicate embeds
a strong pattern as the first argument of the (lifted) constructor, T.

Although the argument predicates are the same in the second equation as in the
first, (∼) at the front of the sub-pattern indicates that matching of this sub-pattern
will not be effective unless a value is demanded for the variable, x. Since demand
for a variable cannot be determined from a pattern (it depends upon the evaluation

7 To make legal Haskell of the definitions in Figure 5, the State type should be declared a newtype
with a redundant data constructor. We have omitted the data constructor from the definitions
given in the paper to economize on notational clutter.

Journal of Functional Programming 27

— the state monad
type State s a = s→ (a, s)

instance Monad (State s)
where

return x = λs→ (x, s)

m >>= f = λs→ let (x, s′) = m s
in f x s′

— the pattern predicate
pi :: P → [Pred]→ Pred
pi p predlist = in fst (patPred p predlist)

patPred :: P → State [Pred] Pred
patPred (Pvar x) = λ(pred : preds)→ (pred, preds)

patPred Pwildcard = return Univ

patPred (Ptilde p) = λpreds→ let l = length (fringe p)
prs = take l preds in

if and (map isUniv prs)
then (Univ, drop l preds)
else patPred p preds

patPred (Pcondata n []) = return (Strong (ConPred n []))
patPred (Pcondata n ((s, p) : ls pats)) =

do pr ← patPred p;
pr′ ← patPred (Pcondata n ls pats)
return (Strong (ConPred n (ifStrict s pr : extract pr list pr′)))

where ifStrict (Strong p) = Strong p
ifStrict Strict p = Strong p
ifStrict Lazy p = p

extract pr list Strong (ConPred prs) = prs
extract pr list ConPred prs = prs

isUniv Univ = True
isUniv = False

fringe :: P → [Name]
fringe (Pvar x) = [x]
fringe (Pcondata ps) = concat (map (fringe . snd) ps)
fringe Pwildcard = []
fringe (Ptilde p) = fringe p

The functions fst, zip, take and drop are defined in the Haskell standard prelude.

Fig. 5. Calculation of Pattern Predicates

28 William L. Harrison and Richard B. Kieburtz

context), the pattern predicate in the first argument position of the constructor, T
is Univ. The predicate derived from the pattern cannot be made more precise.

In the third equation, the strengthed predicate $Univ is asserted of a term bound
to the variable x in a pattern match. This asserts that any value bound to x to be
non-bottom. Consequently, the second argument of the constructor T in the pattern
predicate is asserted to have a normal value matching S x, in spite of the (∼) prefix
of the pattern. The assertion that x has a strong property is, in essence, an assertion
that an actual value for x might be demanded in an evaluation context.

Definition 20 (Fringe of a pattern)
The fringe of a pattern p is the list of (distinct) variables occurring in p, in left-to-
right order. It is formally defined on the abstract syntax of patterns by the Haskell
function fringe given in Figure 5.

The fringe of a pattern p is closely related to the record type of its codomain, as
defined in Definition 8. Specifically, if p :: τ → ζ and ζ = {x1 : σ1, . . . , xn : σn},
then fringe(p) is a list (without repetitions) of the variables x1, ..., xn, arranged in
order of their left-to-right occurrence within p.

5.4.2 The domain of a pattern

We define the domain of a pattern with a predicate characterizing the set of terms
matching the pattern in a non-deferred match.

Definition 21 (Pattern Domain Predicate)
The domain predicate of pattern p, called Dom(p), is the predicate defined by ap-
plying the predicate pattern constructor derived from p to a list of Univ predicates.

Dom(p) =def π(p) Univ · · ·Univ

Notice that Dom(p) is either Univ (in case the pattern is a variable, is the wildcard
pattern, or is irrefutable) or it is a strong predicate.

The formula ¬Dom(p) asserts that a term fails to match p or is undefined. Thus,
a strengthened domain predicate disjoined with its strong complement is, in effect,
a partial definedness predicate. A term that satisfies either $Dom(p) or $¬Dom(p)
must have a normal value at every subterm necessary to evaluate a control-enabled
match with the pattern p.

5.4.3 Properties of case branches

There are two rule schemes for case branches. We write a case branch as {p→ e},
where the meta-variable p represents the pattern, and e the expression in a case
branch. One rule characterizes the function of a case branch when it is tried in a
case expression whose discriminator matches its pattern:

Π, x1 ::: P1, · · · , xn ::: Pn
P e ::: Q

Π
P {p -> e} ::: π(p) P1 · · ·Pn → $Just Q
(15)

Journal of Functional Programming 29

where [x1, . . . , xn] = fringe p, and a second rule characterizes its behavior when
pattern-matching fails:

Π
P {p -> e} ::: $¬Dom(p)→ $Nothing (16)

5.4.4 Properties of case expressions

Recall from Section 5.4 that predicates associated with the case branches of a case
expression have the form Just P, for some predicate P , or else Nothing. We refer
to such predicates as Maybe predicates. Rules for a case expression are defined
inductively, based upon a rule for a single case branch. The base for induction is
given in terms of a pseudo case expression (caseM) whose properties are expressed
by Maybe predicates.

Π
P d ::: π(p) P1, . . . , Pk Π
P match ::: π(p) P1 · · ·Pn → $Just Q

Π
P caseM d of {match} ::: $Just Q
(17)

Π
P d ::: $¬Dom(p)
Π
P caseM d of {p -> e} ::: $Nothing

(18)

Notice that for an irrefutable pattern, Dom(∼p′) = Univ and thus, $¬Dom(∼p′) =
$UnDef, which is unsatisfiable. Thus the antecedent of rule (18) cannot be dis-
charged when p is an irrefutable pattern, as it might be if p were an ordinary
constructor pattern.

The following rules account for a Haskell case expression, without guards8.

Π
P caseM d of {match} ::: $Nothing Π
P case d of {matches} ::: Q

Π
P case d of {match; matches} ::: Q
(19)

Π
P caseM d of {match} ::: $Just P

Π
P case d of {match; matches} ::: P
(20)

where matches is a sequence of zero or more case branches.

5.4.5 Example: deriving a property of a case expression

Figure 6 shows two sample derivations demonstrating how P-logic distinguishes
pattern-matching success and failure. The first derives a strong property of a case
expression in which there is a pattern matching the case discriminator. The second
derivation involves a case branch that generates a pattern match failure.

5.5 A semantic interpretation of P-logic

A model for P-logic extends a Haskell model by providing interpretations for pred-
icate constants and predicate constructors. The meanings of predicates refine the

8 It is straightforward to extend P-logic to account for case branches with guards, by using Maybe
predicates. Guards have not been included in the Haskell fragment on which this paper is based
because they add nothing essential to the exposition.

30 William L. Harrison and Richard B. Kieburtz

� L ::: Univ � R ::: $R
(12)

� (T L R) ::: $(TUniv $R)
(12)

x ::: Univ, y ::: $R � y ::: $R

� {(T~(S x) y) -> y} ::: $(T Univ $R)→$Just $R
(15)

� caseM (T L R) of { (T~(S x) y) -> y } ::: $Just $R
(17)

� case (T L R) of { (T~(S x) y) -> y } ::: $R
(20)

� (T L R) ::: $¬(S Univ)
(13)

� caseM (T L R) of {(S x) -> x} ::: $Nothing
(18)

Fig. 6. Distinguishing Pattern Match Success from Failure in the Logic
(Numbers refer to the rule that applies at each step.)

meanings of types. The meaning of a simply typed predicate in P-logic is defined
as a characteristic predicate over the set underlying a frame that interprets the
corresponding Haskell term type, τ .

Let D[[]]τ :: Term → Env → |Dτ | be a meaning function that maps every τ -
typed Haskell expression to its denotation in the underlying set of a type frame,
Dτ , where Env = Var→ |D|. When the model is evident from context, as when we
are only talking about a single model, the model identifier will be omitted from the
meaning function.

We shall overload the meaning-brackets notation to express the semantics of
predicate formulas at a type, τ , [[–]]τ :: Predicate → PredEnv → Powerset |Dτ |,
where PredEnv is the type of a predicate environment that gives meanings to pred-
icate variables. We need predicate environments because the rules of P-logic contain
predicate variables that range over formulas.

Definition 22
A predicate assignment, ξ, is a type-indexed set of maps from predicate identi-
fiers to sets of denotations in the type given by the index. The type of a predicate
assignment is PredEnv ::

⋃
τ∈Type{Name→ Powerset |Dτ | }. A predicate assignment

gives meanings to predicate variables in its domain at every type.

5.5.1 Strong predicates

Formulas are interpreted as characteristic predicates of sets (posets) in a type frame.
Given that the meaning of a predicate formula P of type Pred τ is a subset of the
τ -type frame, [[P]]τ ξ ⊆ |Dτ |, the interpretation of a strong predicate is

[[Strong P]]τ ξ = [[P]]τ ξ \ {⊥τ}

5.5.2 Universal predicates

The predicate constants Univ and UnDef represent the universal predicate and the
predicate satisfied only by the bottom element, in each type frame. The interpre-
tations of these predicates are:

Journal of Functional Programming 31

[[Univ]]τ ξ = |Dτ | [[UnDef]]τ ξ = {⊥τ}
[[$Univ]]τ ξ = |Dτ |\ {⊥τ} [[$UnDef]]τ ξ = { }

5.5.3 Predicate variables

The meaning assigned to a predicate variable at a specified type is given by applying
the predicate environment map at that type to the name of the variable:

[[PredVar n]]τ ξ = ξτ n

5.5.4 Data-induced congruence predicates

The meaning of a predicate formed with a k-ary data constructor, C at a ground
instance of a Haskell data type, T , is given by the following:

If Constr C [(s1, τ1), . . . , (sk, τk)] ∈ ΣT then
[[Conpred C [P1 · · ·Pk]]]T ξ =
{c • (t1, . . . , tk) | t1 ∈ [[P ′

1]]τ1 ξ ∧ . . . ∧ tk ∈ [[P ′
k]]τk

ξ} ∪ {⊥}
where P ′

i =
{

$Pi if si = Strict
Pi if si = Lazy

and c� ∈ |Dτ1→···→τk→T | is the semantic embedding of C

5.5.5 Arrow predicates

An arrow predicate characterizes a property of a function-typed term. We can read
a proposition such as e ::: P → Q as the assertion “when e is applied to an argument
that has property P , the application has property Q”.

[[Parrow P Q]]τ1→τ2 ξ =
{f ∈ |Dτ1→τ2 | | ∀x. x ∈ [[P]]τ1 ξ ⇒ f • x ∈ [[Q]]τ2 ξ} ∪ {⊥(τ1→τ2)}

where the function space is that of continuous functions from |Dτ1 | to |Dτ2|.

5.5.6 Negated predicates

[[Pneg P]]τ ξ = (|Dτ | \ [[P]]τ ξ) ∪ {⊥τ}
The meaning of a negated predicate is the complement of the meaning of the positive
predicate with respect to the frame set of its type, to which the bottom element of
the type frame is appended.

5.5.7 Polymorphic predicates

Definition 23
A well-typed predicate, P , is polymorphic in a type variable, α, if it has a typing
Γ
 P ::Pred σ, where α ∈ Vars(σ).

32 William L. Harrison and Richard B. Kieburtz

The meaning of a polymorphic predicate is not given directly. Rather, a poly-
morphically typed term is said to satisfy a compatibly typed predicate if and only
if every ground-typed instance of the term satisfies the corresponding ground-typed
instance of the predicate.

5.6 Satisfiability and validity of a sequent

This section will formalize the notion of what it means for a well-typed term to sat-
isfy a compatibly typed predicate, stating it in the setting of type frame semantics.

Definition 24
[Ground proposition]
Let A be a ground type environment and τ ∈ Type. If a term e and predicate
symbol P satisfy the typing judgments A
 e::τ and
 P ::Pred τ , where τ is the
(ground) type derived for e in A, then, A
 e::τ ::: P is a ground proposition in
A. A set of propositions, Π, is ground in A (which we write as A
 Π) if every
π ∈ Π is a ground proposition in A.

Definition 25
[Truth of a ground proposition in a frame model]
Let D be a Haskell frame as defined in Section 4 and let A be a ground type
environment. Suppose term e and predicate symbol P satisfy the typing judgments
A
 e::τ and
 P ::Pred τ , respectively. Further, let ρ be an A-compatible value
assignment and ξ be a predicate assignment. We say that the ground proposition
A
 e::τ ::: P is true in frame D under assignments ρ and ξ iff D[[A
 e::τ]]ρ ∈
D[[P]]τ ξ. We write A;D, ρ, ξ |= Pr to express that a proposition Pr, well-typed in
A, is true in a specific frame model and environment.

Definition 26
[Ground sequent]
Let A be a ground type environment. A sequent A; Π
P ∆ is ground in A if both
A
 Π and A
 ∆.

Definition 27
[Polymorphic sequent]
Let Γ be a type environment containing free occurrences of type variables. A sequent
Γ; Π
P ∆ is polymorphic in FV (Γ) if for all A in TA(Γ), the sequent A; Π
P ∆
is ground in A.

Definition 28
[Validity of a ground sequent]
Let D be a Haskell frame and A a ground type environment. A ground sequent
A; Π
P ∆ is valid for D under predicate assignment ξ if, for everyA-compatible
value assignment, ρ, the following implication is true:

(∀Pr ∈ Π. A;D, ρ, ξ |= Pr) ⇒ ∃Pr ′ ∈ ∆. A;D, ρ, ξ |= Pr ′

Definition 29

Journal of Functional Programming 33

[Validity of a polymorphic sequent]
Let D be a Haskell frame and Γ be a non-ground type environment. A polymorphic
sequent Γ; Π
P ∆ is valid for D under predicate assignment ξ if forall A in
TA(Γ), A; Π
P ∆ is valid for D under ξ. We write D, ξ |= ϕ to express that a
polymorphic sequent, ϕ is valid for D under ξ.

5.6.1 Satisfiability of polymorphic predicates

The typing discipline ensures that the meaning of a predicate that is polymorphic
in a type variable α cannot depend upon the structure of terms of type α. If a
polymorphically typed expression is specialized by a value assignment to a (poly-
morphically typed) term variable and satisfies a predicate under a particular type
assignment, A, then it also satisfies the predicate when specialized by a value as-
signment under another type assignment, A′. We formalize this assertion in the
following lemma.

Some notation is introduced in the statement of the lemma. If e is a Haskell
term, the restriction of ρ to free variables of e is expressed as ρ ↓FV(e). Also, let
+> :: (Vars → D) × (Vars → D) → (Vars → D) be the environment-extending
function specified by the equation (ρ +> ρ′) x = if x ∈ dom(ρ′) then ρ′ x else ρ x.

Lemma 1
[Polymorphic Predicates]
Let Γ be a typing environment, σ a type scheme and suppose e :: σ is a term
well-typed in Γ and P :: Pred σ is a unary predicate.

∀A1, A2 ∈ TA(Γ).
∃!θ1. A1 = θ∗1 ◦ Γ⇒
∃!θ2. A2 = θ∗2 ◦ Γ⇒
∀ρ, ρ1, ρ2 :: Vars→ D \ {⊥}.
∀ξ :: PredEnv.

Dom(ρ1) = Dom(ρ2) = {x ∈ Vars | TV(Γ x) �= ∅} ⇒
Γ |= ρ↓FV(e) ∧ A1 |= ρ1 ↓FV(e) ∧ A2 |= ρ2 ↓FV(e)⇒

[[A1
 e :: θ∗1 σ]] (ρ+> ρ1) ∈ [[
 P]]θ∗
1 σ ξ

⇐⇒
[[A2
 e :: θ∗2 σ]] (ρ+> ρ2) ∈ [[
 P]]θ∗

2 σ ξ

Comment: The lemma asserts that satisfaction of a strong predicate by a term in any
type-respecting interpretation is independent of the value assignment made to poly-
morphically typed term variables. The polymorphic typing condition is TV(Γx) �= ∅.
The type compatibility condition Γ |= ρ↓FV(e) provides for variables that occur free
in e but which are not polymorphically typed in Γ; any such variable will have a
value assigned in ρ and this assignment must be compatible with the typing given
by Γ. The restriction of value assignments ρ1 and ρ2 to non-bottom values elimi-
nates the possibility that one of these assignments produces bottom while the other
does not. As bottom is an element of every type, this restriction does not limit the
scope of assigned values that might distinguish types.

34 William L. Harrison and Richard B. Kieburtz

Proof: We consider explicitly only atomic predicates; the proof extends to formu-
las constructed with predicate negation, conjunction and disjunction by an obvious
induction. For atomic predicates we shall use coinduction on the structure of eval-
uation contexts that observe values manifesting the type scheme, σ.

Case σ = α: If P is satisfiable at an arbitrary type instance, it must be that
P = Univ. Thus for any type instance [τ/α] and any type-compatible valuation
assignment ρ and predicate assignment ξ, [[Γ
 e :: τ]] ρ ∈ [[Γ
 Univ]]τ ξ, from
which the conclusion of the lemma follows immediately.

Case σ = T α1 · · ·αn = · · · |Cj σj,1 . . . σj,kj | · · · where j ∈ [1..m]. If P is satisfiable,
either P = Univ or P has the form Cj Pj,1 · · ·Pj,kj for some j ∈ [1..m].
Consider the latter case. An expression e :: σ is observed by a case expression.
Individual components of a value constructed with a data constructor Cj are
projected by expressions case e of {Cj x1 . . . xkj → xp} for p ∈ [1..kj]. As
hypotheses for coinduction, assume the conclusion of the lemma for each of
the typed assertions,

Γ
 case e of {Cj x1 . . . xkj → xp} :: σp ::: Pj,p (j ∈ [1..m], p ∈ [1..kj])

As the assumed instances cover all projections from a term of the polymorphic
data type, these hypotheses support the conclusion of the lemma for any well-
typed proposition in the data type.

Case σ = σ1 → σ2: If P is satisfiable, either P = Univ or P has the form P1 → P2,
where P1 :: Pred σ1 and P2 :: Pred σ2. The former case is immediate; so
consider the latter. A value of an arrow type is observed by its applications
to compatibly typed arguments. For any term, e′, which satisfies the typing
Γ
 e′ :: σ1, choose type environments A1 and A2 to instantiate the type
scheme. Assume as hypotheses that the conclusion of the lemma holds (with
the same choice of type environments, A1 and A2) for both the assertions
Γ
 e′ :: σ1 ::: P1 and Γ
 e e′ :: σ2 ::: P2. Now, using the type frame equation
at each instance of the polymorphic types gives

∀ρ, ρ1, ρ2 :: Vars→ D\{⊥}.
∀ξ :: PredEnv.

Dom(ρ1) = Dom(ρ2) = {x ∈ Vars | α ∈ TV(Γ x)} ⇒
(∀d ∈ [[
 P1]]θ∗

1 σ1 ξ.

[[A1
 e :: θ∗1 σ1 → θ∗1 σ2]](ρ+> ρ1) • d ∈ [[
 P2]]θ∗
1 σ2 ξ)

⇐⇒
(∀d ∈ [[
 P1]]θ∗

2 σ1 ξ.

[[A2
 e :: θ∗2 σ1 → θ∗2 σ2]](ρ+> ρ1) • d ∈ [[
 P2]]θ∗
2 σ2 ξ)

Since the arrow (→) is a free predicate constructor the following equality is
justified,

∀θ :: Vars→ Type. θ∗ σ1 → θ∗ σ2 = θ∗ (σ1 → σ2)

from which the semantic definition of an arrow predicate yields the conclusion
of the lemma.

Case σ = τ , where τ is a ground type. Then the conclusion holds trivially.

Journal of Functional Programming 35

We conclude by coinduction that the conclusion of the lemma holds for all typed
assertions.
�

Corollary 1
If a proposition e :: σ ::: P is validated by extending a value assignment, ρ, at
any ground type specialization (A, τ) ∈ Gr(Γ
 e :: σ) then it is validated for ρ

extended at every such specialization.

Proof: The corollary is an immediate consequence of Lemma 1 and the enumer-
ability of types.

6 Soundness of P-logic

Soundness of a logic means that all of its inference rules are coherent with its
semantics. An inference rule asserts a propositional implication of a consequent
judgment from zero or more antecedent judgment forms.

6.1 Soundness of inference rules

An inference rule is sound if the implication it states is valid for a model of the logic.
An implication is valid if it is true of a model under all type-compatible assignments
to variables.

Definition 30
[Rule soundness]
Let Γ be a type environment which assigns a unique type variable to each term
variable in its domain. A polymorphic rule of P-logic,

Γ; Π1
P ∆1 · · ·Γ; Πn
P ∆n

Γ; Π
P ∆

is sound if there is a frame model, D, such that under every predicate assignment,
ξ

D, ξ |= (Π1 ⇒ ∆1)⇒ · · · ⇒ (Πn ⇒ ∆n)⇒ Π⇒ ∆

�

A rule may contain free term variables, which are implicitly universally quantified
over the scope of the entire rule. In addition, the properties asserted in a rule
are often represented by free predicate variables, also subject to implicit universal
quantification over the rule.

Many rules of P-logic, in particular those characterizing the applicative structures
and free term algebras of Haskell, are polymorphic, i.e. the types of terms and
predicates in the rule contain at least one free type variable. Corollary 1 tells us
that a polymorphic property can be observed at any type instance of a polymorphic
type. In view of Definition 30, we also have the following as a corollary to Lemma 1.

Corollary 2

36 William L. Harrison and Richard B. Kieburtz

— Semantic Functions for E and P
mE :: E → Env→ V
mP :: P → V → Maybe[V]

— Environments
type Name = String
type Env = Name→ V

— Domain of Values
data V = FT (V × V) {- trace represenation of function values -}

| Tagged Name [V] {- structured data -}
| Bottom {- bottom element in a pointed domain -}

— Projection out of the Maybe monad
purify :: Maybe a→ a
purify (Just x) = x
purify Nothing = Bottom

— Alternation
([]) :: (a→ Maybe b)→ (a→ Maybe b)→ (a→ Maybe b)
(f [] g) x = case f x of

Nothing → g x
Just v → Just v

Fig. 7. Semantic operators used in the reference frame model
Note that purify is analogous to the function fromJust defined in Haskell’s standard prelude.

However, when applied to the constructor Nothing, purify returns the symbolic value Bottom, a

constructor in the data type V, whereas fromJust returns the semantic bottom of the data type.

The soundness of a polymorphic rule of P-logic can be observed at any ground
instance of its typing.

�

Not only does polymorphism allow the soundness of inference rules to be checked
at an arbitrarily chosen type instance, but as a consequence of model-independence
(see Lemma 8.2.5, (Mitchell, 2000)), soundness can be checked relative to any par-
ticular frame model. In the following section, we describe a specific frame model,
which is an interpreter for Haskell abstract syntax and is coded in Haskell itself.
We have used this interpreter as a reference model to automate soundness checking
of rules (8–14) given in this paper.

6.2 A reference frame model

The model described here is an interpreter for the Haskell fragment whose semantics
is given in Section 4. Although the semantic metalanguage used in defining the
intepreter is Haskell, care has been taken to use notation which will be recognizable
by any functional programmer. However, unlike many functional languages, Haskell
has explicit monads (Wadler, 1992). The interpreter relies on the Maybe monad
which was introduced in Section 4.3.6 to model control flow among alternate match
clauses.

Figure 7 contains a description of the underlying representation of value domains

Journal of Functional Programming 37

mT :: T → LS→ [V]
mT Triv Strict = [()]

mT (T τ1 · · · τp) Strict =⋃n
i=1{Tagged (name Ci) [ti,1, . . . , ti,ki] | ti,j ← mT σi,j [τ1/α1, . . . , τp/αp] si,j

for (1 ≤ j ≤ ki) }
where Constr Ci [(si,1, σi,1) · · · (si,ki , σi,ki)] ∈ ΣT α1,...,αp for (1 ≤ i ≤ n)

mT (τ1 → τ2) Strict = {FT tc | tc← traces τ1 τ2}
where ∀tc :: [(V, V)]. tc ∈ traces τ1 τ2 ⇔

(∀t1 ∈ (mT τ1 Lazy). ∃t2 ∈ (mT τ2 Lazy). (t1, t2) ∈ tc) ∧
∀(t1, t2), (t′1, t

′
2) ∈ tc. (t1 � t′1 ⇒ t2 � t′2) ∧ (t1 = t′1 ⇒ t2 = t′2)

mT τ Lazy = {Bottom} ∪ (mT τ Strict)

Fig. 8. Frame model for a Haskell fragment: Type frame sets. (To compute type frame
sets, a Haskell implementation represents sets by lists without repeated elements.)

in the interpreter for the Haskell fragment considered in this paper. The interpreta-
tion function for expressions, mE, maps a typed expression and an environment to
an untyped value in the domain V. The domain V is structured as a disjoint union
of a distinguished element, Bottom, a set of tagged tuples (represented as finite
lists) of values that model elements of data types, and a set of lists of value pairs
that encode a trace representation of functions. The domain is partially ordered by
a relation (�), in which Bottom is a unique least element, strictly below every other
element of V. The partial order extends pointwise to a partial ordering on tagged
tuples. All of the interpreter functions are monotonic with respect to this order.

A list of pairs9, tc, is the trace of a function if it satisfies the constraint

∀(x1, y1), (x2, y2) ∈ tc. x1 = x2 ⇒ y1 = y2

The partial order (�) extends to traces as follows:

FT (xs) � FT (xs′)⇔ ∀x, y ∈ V. (x, y) ∈ xs⇒ (y = Bottom ∨ (x, y) ∈ xs′)

A trace is monotone if ∀x, x′ ∈ V .x � x′ ⇒ f x � f x′. On finite domains, monotone
functions preserve all limits and hence are continuous.

The application operator (•) in this frame model is

(•) :: (V, V)→ V

FT (tc) • v = purify (lookup v tc)

where lookup :: Eq a ⇒ [(a, b)]→ Maybe b is defined in Haskell’s standard Prelude
and purify is defined in Figure 7.

9 Ordinarily, a trace would be defined as a set of ordered pairs. However, a list data structure,
without repeated elements, is used in the interpreter to code a set.

38 William L. Harrison and Richard B. Kieburtz

mP :: P → V → Maybe[V]
mP (Pvar x) v = Just[v]
mP (Pcondata n ps) (Tagged t vs) = if (n == t)

then (stuple (map (mP . snd) ps) vs)
else Nothing

mP (Pcondata n ps) Bottom = Just Bottom
mP Pwildcard v = Just []
mP (Ptilde p) v = Just (case (mP p v) of

Nothing →
take (length (fringe p)) (repeat Bottom)

Just z → z)

stuple :: [V → Maybe[V]]→ [V]→ Maybe[V]
stuple [] [] = Just []
stuple (q : qs) (v : vs) = do v′ ← q v

vs′ ← stuple qs vs
return (v′ ++ vs′)

Fig. 9. Frame model for a Haskell Fragment: Patterns

6.2.1 Frame sets for Haskell types

Figure 8 gives the underlying sets of type frames for the types modeled in the
interpreter. The function mT calculates the frame set for a type. The second argu-
ment of mT is a “strictness value” used to indicate whether a frame set is pointed
(noted by the argument value Lazy) or unpointed (noted by the argument value
Strict).

The frame set for a data type is a set of representations of the saturated applica-
tions of its data constructors to elements of the frame sets of their argument types.
These frame sets are either pointed or unpointed according to the strictness anno-
tation, si,j declared for each (jth) argument of a data constructor Ci. Meanings of
data constructors are given in Figure 10.

The frame set of a finitary arrow type, τ1 → τ2 is specified in terms of monotone
traces, where traces τ1 τ2 ⊂ Powerset (|Dτ1 | × |Dτ2 |) is the relation satisfying both
the functionality and monotonicity constraints10.

6.2.2 Interpreting patterns

The semantics function mP interprets patterns, as computations in the Maybe
monad. The data constructor Nothing in the codomain type designates failure of
an attempt to match the pattern with an argument value; the data constructor
Just injects a list of the component values extracted from an argument when it is
deconstructed in a successful match.

10 The trace representation can also be extended to accommodate infinitary arrow types by adding
the constraint that limits of directed sets are preserved, but as the Haskell fragment considered
in this paper does not require infinitary types, the additional constraint has been omitted.

Journal of Functional Programming 39

mE :: E → Env→ V
mE (V ar x) ρ = ρ x
mE (Constr n ts) ρ = constrFun n ts []
mE (Case e ml) ρ = mcase ρ ml (mE e ρ)
mE (Abs (x :: τ) e ρ = FT [(v, mE e ρ[x �→ v]) | v ← mT τ Lazy]
mE (App e1 e2 ρ) = let FT tc = mE e1 ρ

in purify (lookup (mE e2 ρ) tc)
mE Undefined ρ = Bottom

constrFun n [] vs = Tagged n vs
constrFun n ((s, τ) : ts) vs = FT [(x, y) | x← mT τ s,

y ← constrFun n ts (vs ++[x])]

match :: Env→ (P, E)→ V → Maybe V
match ρ (p, e) = (mP p) � (((\vs→ mE e (extL ρ xs vs)) >>> Just)

where xs = fringe p
extL ρ [] [] = ρ
extL ρ (x : xs) (v : vs) = extL (ρ[x �→v]) xs vs

mcase :: Env→ [(P, E)]→ V → V
mcase ρ ml = (fatbarL (map (match ρ) ml)) >>> purify

fatbarL :: [V → Maybe V]→ V → Maybe V
fatbarL ms = foldr ([]) (\ → Just Bottom) ms

Fig. 10. Semantics of a Haskell Fragment: Expressions

Figure 7 also displays two combinators integral to modeling case expressions and
patterns, called “fatbar” ([]) and purify. If m1 and m2 have type (V → Maybe V),
then

(m1 [] m2) v =
{

(m1 v) if (m1 v) = Just v′

(m2 v) otherwise.
This is precisely the sequencing behavior necessary for modeling case expressions.
The purify operator converts a Maybe-computation into a value, sending a Nothing
to Bottom. Post-composing with purify signifies that expressions whose evaluation
produces certain pattern-match failures (e.g., exhaustion of the branches of a case

expression) ultimately denote Bottom.
Figures 9 and 10 display the semantics for patterns and expressions, mP and

mE, respectively. These semantics specialize the abstract semantics of Sec. 4 to the
concrete representations given by the interpreter.

To confirm the assertion that the interpreter is a frame model, let’s check the
components specified in Section 4.

– D, a collection of typed frame objects, is comprised of the images of ground
types under the mapping λτ ->mT τ Lazy, and subject to the partial order
on the domain V , as defined in Section 6.2.

– The application operation, •, is defined in Section 6.2.

40 William L. Harrison and Richard B. Kieburtz

– Given f :: (τ1 × τ2)→ τ3,

f � = FT{(a,FT tc) | a← mT(τ1), tc← traces τ2 τ3,

∀b ∈ mT(τ2).mE f [] • (a, b) = FT tc • b}
– Given g :: τ1 → τ2 → τ3,

g� = FT{((a, b), c) | a← mT(τ1), b← mT(τ2), c = (mE g [] • a) • b}
– For a data constructor, Cn, the interpreting semantic function is cn = mE Cn [].
– The pattern function for a data constructor, Cn is cM

n = mP ◦ (Pcondata n).
– c−1

n = purify • cM
n

– The interpreter uses the monadic operators defined for the Maybe monad in
Haskell.

– The operator ⊕ is interpeted by the function stuple. Tuples of computations
typed in the Maybe monad are represented as lists. The Kleisli composition
(�) and alternation operators are programmed analogously to their definitions
in Section 4.

6.3 Finite models for Haskell types

In this section, we consider the type constructions of the Haskell fragment, to show
how each type or type construction can be represented by a finite type in which to
model some rule of P-logic.

In checking any rule, the principle followed is to choose the simplest ground type
possible to instantiate each type variable of a polymorphically typed term. Thus,
for instance, to check rule (8) for abstraction introduction, notice that the rule is
polymorphic in each of the two type meta-variables, τ1 and τ2, that are combined to
form the arrow type. Thus we can choose to check the rule at the type Triv→ Triv,
in which each type meta-variable has been instantiated to Triv, forming the simplest
instance of an arrow type.

Notice that we do not require a recursive datatype constructor, such as List,
to check soundness of the rules given in this paper. It is not necessary to choose
a recursively defined type because none of the basic rules of P-logic concludes
assertions that depend explicitly or implicitly on fixed-points. In particular, terms
specific to data types occur only in rules (12)–(15). The terms in these rules contain
no explicitly nested occurrences of data constructors and thus, soundness of these
rules can be checked at a ground instance of the type

data StrictOption a = Cstrict ! a | Clazy a

which includes both a data constructor sat-strict in its argument and a non-sat-
strict constructor. We return in Section 6.5.1 to take up the soundness of rule (15),
in which patterns may implicitly be nested.

6.4 Modeling predicates

When a ground type instance of the terms in a rule has been chosen, the typing
of every predicate in the rule is also determined. To check soundness of the rule,

Journal of Functional Programming 41

we simulate all type-compatible value assignments to term variables and predicate
assignments to the predicate variables that occur in the rule.

At every type we have the predicates Univ, $Univ, UnDef and $UnDef. Notice
however, that no information can be gotten from the assignment of Univ, as this
predicate contains every element of the corresponding type’s frame set, nor from
the assignment of $UnDef, which is unsatisfied by any element of the frame set.

In addition to the interpretations of $Univ and UnDef, interpretations are required
for predicates at a particular type. For instance, for the arrow type, Triv → Triv,
the needed predicate interpretations are:

$($Univ→ $Univ) = {FT [((), ())]}
$($Univ→ Univ) = {FT [((),Bottom)], FT [((), ())]}
$(Univ→ $Univ) = {FT [(Bottom), ()), ((), ())]}
$(Univ→ Univ) = {FT [(Bottom,Bottom), ((),Bottom)],

FT [(Bottom,Bottom), ((), ())], FT [(Bottom, ()), ((), ())]}
Notice that the non-monotonic function trace FT [(Bottom, ()), ((),Bottom)] is
not generated as a member of any predicate interpretation.

The interpretation of $Univ at the type Triv → Triv is the union of the strong,
arrow-specific interpretations listed above. The interpretation of any weak predicate
is just the union of its strong interpretation with the singleton set, {Bottom}.

6.5 Automated model checking of inference rules

The interpreter given in Section 6.2 provides a machine-executable frame model for
the Haskell fragment. Using the types described in Section 6.3, it is straightforward
to calculate the elements of each type frame set. In this section, we describe how this
executable model has been used to check the soundness of polymorphic inference
rules by calculation.

An initial step in model-checking a polymorphic rule is the choice of a type
instance, justified by Corollary 2. Instantiating each type variable at the type Triv
meets this requirement. This is sufficient for rules (8–11). For rules (12–16), we
choose the data type StrictOption Triv.

A valuation assignment for the free term variables occurring in a rule simply
binds each variable to an element of the frame set corresponding to the type of the
variable. Universal quantification over valuation assignments is realized by iterating
through all possible value assignments, for each variable independently, at the finite
type in which the rule is to be checked.

Similarly, a predicate assignment binds a subset of the type frame set to each
predicate variable that occurs free in a rule. Quantification over predicate assign-
ments is realized by iterating over all type-compatible predicate assignments.

At each valuation and each predicate assignment to the free variables occurring in
a rule, the truth of the propositional implication realized by that particular instance
of the rule is checked. A proposed rule is sound if all such checks succeed at the
selected type; unsound if any such rule instance is false.

42 William L. Harrison and Richard B. Kieburtz

For example, the polymorphic rule (9), which is repeated below

(ArrowLeft)
Π
P e′ ::: P e e′ ::: Q
P ∆

Π, e ::: $(P → Q)
P ∆

can be checked under the typing assignment e′ :: Triv, e :: Triv → Triv, P, Q ::
Pred Triv. For each particular valuation assignment and predicate assignment, we
calculate the weakest context assumption, Π, and the strongest entailment, ∆, for
which both of the rule’s antecedent clauses are true. Then, using these assignments
and the calculated context assumption and entailment propositions, the truth of
the rule’s consequent is checked, using the interpretations provided by the refer-
ence frame model to evaluate Haskell terms. The process described here is fully
automated by a Haskell program.

In checking the rule (ArrowLeft), the assumption calculated to validate the an-
tecedents provides a binding for a term (the meta-variable, e′) to which e is applied
in an assumption of the second antecedent. Even though this application is not
explicit in the hypothesis of the consequent, the assumed binding is present in the
valuation of Π, and provides support for the calculated entailment. This succeeds
under each valuation and predicate assignment for which the antecedents of the
rule could be validated; thus the rule is deemed sound.

However, when the hypothesis in the consequent of the rule is weakened, as in

(Unsound)
Π
P e′ ::: P e e′ ::: Q
P ∆

Π, e ::: (P → Q)
P ∆

the rule is found to be false under the valuation assignment [(e′,Triv), (e,Bottom)]
and the predicate assignment [P = Univ, Q = $Triv]. Under these assignments,
we calculate from the antecedents a weakest context constraint (t′, ()) ∈ Π and
a strongest entailment constraint (t t′, ()) ∈ ∆. These constraints are not both
satisfiable in the consequent, under the semantics of application. Thus, had the
modified rule been proposed as a rule of P-logic, it would have been found unsound
by automated model checking and rejected.

6.5.1 Soundness of rule (15)

Π, x1 ::: P1, · · · , xn ::: Pn
P t ::: Q

Π
P {p -> t} ::: π(p) P1 · · ·Pn → $Just Q

Rule scheme (15), which is repeated above, is polymorphic in the types of the
variables in the pattern of a case branch. It is not polymorphic in the type of
a pattern itself, however, and thus soundness of the rule cannot be checked at
an arbitrarily chosen, “small” type. Since the rule scheme accommodates nested
patterns, we shall prove it sound by inducting on the structure of a pattern. At
base cases for the induction, and also for the induction steps, the proof will make
use of model-checking to verify that these cases are valid under all well-typed value
assignments to pattern variables and to predicate variables. Model-checking can be
done at a set of “small” type instances that are assumed for the variables occurring
in the pattern’s fringe.

Journal of Functional Programming 43

Recall that the predicate associated with a pattern is calculated by:

π(p) preds = fst (patPred p preds)

The following lemma relates the sequence of predicate arguments consumed by
the application patPred p preds to the sequence of variables bound in a pattern,
fringe p.

Lemma 2
[Associating predicates with the fringe of a pattern]
Let p be a pattern and preds = [P1, P2, . . .] be a sequence of predicate formulas
such that length preds ≥ length (fringe p). Then

patPred p preds =
(fst (patPred p (take (length (fringe p)) preds)), drop (length (fringe p)) preds)

Proof: by induction on the structure of a pattern. Each equation in the definition of
patPred corresponds to one such case. Details of the proof are given in the Appendix.

�

Definition 31
[Implication ordering of predicates]
Let (�) ⊆ Pred × Pred be the smallest relation transitively closed under the fol-
lowing:

P � Univ

$UnDef � P

$P � P

P � Q⇒ $P � $Q

P1 � Q1 ⇒ · · · ⇒ Pk � Qk ⇒ C(k) P1 · · ·Pk � C(k) Q1 · · ·Qk

A ramification of the implication ordering is that in every ground type assignment,
A, and for all A-compatible assumptions, Π, if t :: τ is a well-typed term and P

and Q are (�)-related predicates of type Pred τ , then

P � Q⇒ Π
P t ::: P ⇒ Π
P t ::: Q

Definition 32
[Substitution of predicates for pattern variables]

subst :: Pattern→ [(Var,Pred)]→ Pred
x ‘subst‘ [(x, P)] = P

‘subst‘ prs = Univ

∼p ‘subst‘ [(x1, Univ), . . . , (xk, Univ)] = Univ where [x1, . . . , xk] = fringe p
∼p ‘subst‘ prs = p ‘subst‘ prs

Cn ‘subst‘ prs = Cn

Cn p1 · · · pk ‘subst‘ prs

= let P1 = p1 ‘subst‘ (take (length (fringe p1)) prs)
Cn P2 · · ·Pk = Cn p2 · · · pk ‘subst‘ (drop (length (fringe p1)) prs)

in Cn P1 P2 · · ·Pk

44 William L. Harrison and Richard B. Kieburtz

Lemma 3
[Binding of predicates for pattern variables]
Let p be a pattern and preds = [P1, P2, . . .] be a sequence of predicate formulas such
that length preds ≥ length (fringe p). Since fringe p can contain no repeated occur-
rences of variables, the association list, zip (fringe p) (take (length (fringe p)) preds),
can be interpreted as a substitution of predicates for variables. The following pred-
icate relation holds for all predicate-derived patterns:

π(p) preds � p ‘subst‘ zip (fringe p) (take (length (fringe p)) preds) (21)

Proof: by induction on the structure of a pattern. Details of the proof are given in
the Appendix.

�

When the terms of a sequent have types restricted to Triv and the arrow types
that can be formed with Triv as a base type, all frame models that distinguish the
bottom element from the non-bottom element of Triv are equivalent. When data
types are allowed, however, the choice of a frame set having a finite cardinality at its
base types may affect the validity or satisfiablity of a sequent with respect to that
model. Note, however, that recursive data types are not required in the languge
fragment we have considered, so a data type has only finite cardinality. And as the
consequent of rule (15) doesn’t specify the arity of constructors that may occur in
a pattern, we might imagine that a data type of bounded size (number and arity of
constructors) could suffice to establish its validity or satisfiablility. That is, should
there be a counterexample to the validity (or satisfiability) of this sequent, there
must be such in a data type of bounded size.

In fact, we can choose as a prototypical data type StrictOption Triv. This type has
enough constructors to discriminate matching and non-matching patterns in a case
expression and it includes constructors both strict and non-strict in an argument
position.

Lemma 4
The following rule scheme, which is a modification of rule scheme (15), is sound.

Π, x1 ::: P1, · · · , xk ::: Pk
P t ::: Q

Π
P {p -> t} ::: p ‘subst‘ zip (fringe p) [P1 · · ·Pk]→ $Just Q

where [x1, . . . , xk] = fringe p.
Proof: This rule is model-checked at the type StrictOption Triv → Maybe Triv.
Sat-strictness or non-sat-strictness of the data constructors has no effect on the
substituted predicate pattern.

�

Theorem 1
Rule scheme (15) is sound.
Proof: The conclusion follows directly from equation (22) and Lemma 4. As a conse-
quence of the predicate ordering π(p) P1 · · ·Pk � p ‘subst‘ zip (fringe p) [P1 · · ·Pk],
under a predicate interpretation and value assignment for which the consequent of

Journal of Functional Programming 45

(15) is valid, the consequent of the modified rule of lemma 4 is also valid. Thus
soundness of the modified rule implies soundness of rule (15).

�

7 Related Work

As part of the Programatica project at the Pacific Software Research Center, we
are developing both a formal basis for reasoning about Haskell programs, and au-
tomated tools for mechanizing such reasoning.

Simon Thompson’s early effort to give a verification logic (Thompson, 1995) for
Miranda (a lazy, functional language that was a predecessor to Haskell) exposed
many of the difficulties inherent in adapting a first-order predicate calculus for use
as a verification logic. The logic for Miranda employs quantification operators that
bind variables to range only over defined terms, or over finite structures of a data
type. The meanings of such quantifiers are extra-logical; they cannot be defined in
the logic itself.

Sparkle (de Mol et al., 2001) is a verification tool for Clean (Plasmeijer & van
Eekelen, 1999), a lazy functional programming language. Sparkle is a tactical the-
orem prover for a first-order logic, specialized to verifying properties of functional
programs. Expressions of the term language, Core-Clean, can be embedded in
propositions, including logical variables bound by universal or existential quan-
tifiers. The Sparkle logic has a notation to express an undefined value but does not
provide modalities.

In formulating P-logic, we are interested in characterizing properties of unbounded
terms of a specific abstract syntax. From the Stratego language11 we learned of
data constructor congruences, whereby the initial-algebra property of a freely con-
structed data type is used to lift strategies for rewriting the arguments of a partic-
ular construction into a homomorphic strategy for rewriting the construction itself.
In P-logic, constructor congruences are used in a similar way to synthesize predi-
cates satisfied by constructed terms out of predicates that characterize subterms.

A different kind of modality is used in P-logic to characterize normalization of
terms by differentiating strong and weak satisfaction criteria. The introduction of
this modality was inspired by a three-valued propositional logic, WS-logic (Owe,
1993), which conservatively extends classical propositional logic, with the notable
exception that the trivial sequent, P
 P is not sound.

A modality analogous to the weak–strong modality of P-logic was introduced
by Larsen (Larsen, 1990) to discriminate must and may transitions in a process
algebra. He observed that conventional process models specify only may, or nonde-
terministic, transitions and therefore, only safety properties can be stated of such
a model. By introducing must, or required transitions, it is also possible to assert
liveness properties.

Huth, Jagadeesan and Schmidt (Huth et al., 2001) generalized Larsen’s analysis

11 For more information, please refer to the Stratego homepage: www.stratego-language.org.

46 William L. Harrison and Richard B. Kieburtz

and provided a semantic interpretation of the modality in a more general framework.
Their semantic interpretation of a predicate is a pair of power-domain elements,
(P⊥, P�), where P⊥ is downward-closed and P� is upward-dense. These interpre-
tations are used in modeling may and must properties, respectively. This general
characterization of predicate interpretations also applies to the weak and strong
notions of predicate satisfaction that we have used in P-logic.

All programming logics must confront the issue of undefinedness because all pro-
gramming languages admit programs which are undefined for some inputs. Among
the sources of such undefinedness are non-termination, pattern-matching failure,
arithmetic errors (e.g., division by zero), etc. Partial logics—logics that deal with
undefinedness—have been studied intensely for years as a basis for programming
logics. A far from complete list includes (Owe, 1993; Gumb & Lambert, 1996; Gumb
& Lambert, 1997; Cheng & Jones, 1991; Farmer, 1995; Gries & Schneider, 1995;
Konikowska et al., 1991). For an excellent overview, the interested reader should
consult Farmer(Farmer, 1995).

8 Conclusions

The language fragment which concerns us here is the part of Haskell98 that has to
do with demand: pattern-matching. We have presented a two succinct formalisms
that specify the denotational and axiomatic semantics of Haskell pattern-matching,
which is a surprisingly complex aspect of the language. Pattern-matching in ML
(Milner et al., 1997), for example, is comparatively much simpler. The relative
complexity of Haskell’s pattern-matching arises chiefly from Haskell’s default lazy
evaluation and from the possibility that irrefutable patterns may be embedded as
sub-patterns. Pattern-matching is essentially an eager activity, and is thus harmo-
nious with ML’s eager semantics.

The first part of this paper reports on part of a semantics for the whole of
Haskell98, some of which has been reported elsewhere (Harrison et al., 2002). One
hurdle to overcome when attempting to write a formal semantics for a large lan-
guage is identifying an appropriate semantic framework in which to specify the
entire language. Haskell98 has a number of features which have been specified at
varying levels of formality operationally, denotationally, or informally: type classes
and overloading, polymorphism, polymorphic recursion, and mixed evaluation to
name just a few. The problem we immediately confronted was: what is a suffi-
ciently expressive framework in which to specify the whole language? Because we
wished to use this semantics to evaluate the faithfulness of P-logic, we narrowed
our selection to denotational semantics.

However, we still faced many choices. Should we take, for instance, a purely
domain-theoretic approach? It was felt that such an approach, while clearly suf-
ficient in terms of expressiveness, would lack the desired level of abstraction for
a standard semantics. In other words, domain-theoretic models include consider-
ably more concrete representation detail than we desired. Indeed, there are many
suitable varieties of domains to model Haskell types, and calling any one of these
“standard” could hardly avoid being seen as an arbitrary choice.

Journal of Functional Programming 47

Ultimately, we fastened onto frame semantics as a suitably abstract foundation
for Haskell98. The underlying representations of frame objects (i.e., what would be
individual cpos in a domain-theoretic model) are left unspecified, constrained only
by the extra structure and their axiomatizations. This representation independence
was extremely useful in the proof of soundness, allowing us to use model-checking
over finite models of types for many rules.

Another virtue of frames as a semantic basis for Haskell98 is their close connec-
tion to the semantics of ML polymorphism. Ohori (Ohori, 1989b; Ohori, 1989a)
demonstrated that a frame semantics for simply-typed lambda calculae may be
conservatively extended in a compelling, elegant, and natural way to a seman-
tics for (first-order) polymorphism—precisely the variety of polymorphism found
in functional programming languages like Haskell or ML. Ohori’s semantics has a
further virtue as a basis for Haskell: the type information within denotations allows
other Haskell features to be captured. Overloading and polymorphic recursion—
both Haskell features in need of illumination—can be neatly expressed in Ohori’s
setting, although we leave this part of Haskell98’s semantics to a sequel.

P-logic is a verification logic for all of Haskell98, although we have only shown
here the part essential to expressing Haskell’s fine control of demand. With its two
modalities, one can formulate properties in P-logic more precisely than would be
possible if predicates could be written in only a single modality. Restricting pred-
icates to the weak modality would result in a partial-correctness logic, as every
predicate would be satisfied by bottom-denoting expressions as well as those de-
noting normal values. If all predicates were restricted to the strong modality, only
properties of provably terminating computations could be verified. In P-logic, one
can express that a function is total; yet not every property entails the obligation to
prove that a denotation is non-bottom.

The proof rules of P-logic are sufficiently subtle that their soundness cannot easily
be confirmed by a quick, visual inspection. However, we were able to mechanize the
most detailed parts of a soundness proof by employing an executable frame model
for Haskell’s semantics to systematically check polymorphic proof rules at a simple
type. The meta-theory that supports this automatic soundness checking is one of
the contributions of this paper.
Acknowledgment The authors wish to thank their colleagues on the Programatica
project, particularly John Matthews, Jim Hook, Mark Jones and Sylvain Conchon
for their encouragement and for numerous discussions on aspects of logic and Haskell
semantics.

References

Barr, Michael, & Wells, Charles. (1990). Category theory for computing science. 1 edn.
New York: Prentice Hall.

Cheng, Jen H., & Jones, Cliff B. (1991). On the usability of logics which handle partial
functions. Pages 51–69 of: Morgan, C., & Woodcock, J. C. P. (eds), Proceedings of the
Third refinement Workshop. Workshops in Computing Series. Berlin: Springer-Verlag.

de Mol, Maarten, van Eekelen, Marko, & Plasmeijer, Rinus. 2001 (September). Theorem

48 William L. Harrison and Richard B. Kieburtz

proving for functional programmers. Pages 99–118 of: Proceedings of the 13th interna-
tional workshop on the implementation of functional programming languages (ifl’01).

Farmer, William M. (1995). Reasoning about partial functions. Erkenntnis, 43, 279–294.

Faxen, Karl-Filip. (2002). A static semantics for haskell. Journal of functional program-
ming, 12(4&5), :295–357.

Girard, Jean-Yves. (1972). Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’état, University of Paris VII. Summary in
Proceedings of the Second Scandinavian Logic Symposium (J.E. Fenstad, editor), North-
Holland, 1971 (pp. 63–92).

Girard, Jean-Yves. (1989). Proofs and types. Cambridge tracts in theoretical computer
science, vol. 7. Cambridge University Press.

Gries, David, & Schneider, Fred B. (1995). Avoiding the undefined by underspecification.
Pages 366–373 of: van Leeuwen, Jan (ed), Computer science today: Recent trends and
developments. Lecture Notes in Computer Science, no. 1000. New York, NY: Springer-
Verlag.

Gumb, Raymond D., & Lambert, Karel. (1996). A free logical foundation for nonstrict
functions. Pages 39–46 of: Proceedings of the cade-13 workshop on the mechanization
of partial functions.

Gumb, Raymond D., & Lambert, Karel. (1997). Definitions in nonstrict positive free logic.
Modern logic, 7, 25–55.

Gunter, Carl A. (1992). Semantics of programming languages: Programming techniques.
Cambridge, Massachusetts: The MIT Press.

Harper, Robert, & Mitchell, John C. (1993). On the type structure of standard ml. Acm
transactions on programming languages and systems (toplas), 15(2), 211–252.

Harrison, William, Sheard, Timothy, & Hook, James. (2002). Fine control of demand
in haskell. Pages 68–93 of: 6th international conference on the mathematics of pro-
gram construction, dagstuhl, germany. Lecture Notes in Computer Science, vol. 2386.
Springer-Verlag.

Hindley, Roger J. (1969). The principal type scheme of an object in combinatory logic.
Transactions of the american mathematical society, 146(Dec.), 29–60.

Hudak, Paul. (2000). The Haskell school of expression: Learning functional programming
through multimedia. New York, NY: Cambridge University Press.

Huth, Michael, Jagadeesan, Radha, & Schmidt, David. (2001). Modal transition systems:
A foundation for three-valued program analysis. Lecture notes in computer science,
2028.

Jones, Mark P. 1999 (21–24 Oct.). Typing haskell in haskell. Pages 68–78 of: Proceedings of
the 1999 haskell workshop. Published in Technical Report UU-CS-1999-28, Department
of Computer Science, University of Utrecht.

Konikowska, B., Tarlecki, A., & Blikle, A. (1991). A three-valued logic for software spec-
ification and validation. Fundamenta informaticae, XIV, 411–453.

Larsen, K. G. (1990). Modal specifications. Pages 232–246 of: Sifakis, J. (ed), Proceedings
of the international workshop on automatic verification methods for finite state systems.
LNCS, vol. 407. Berlin: Springer.

MacQueen, D. B., Plotkin, G., & Sethi, R. (1984). An ideal model for recursive poly-
morphic types. Information and control, 71(1/2). Also Proceedings of the 11th ACM
Symposium on Principles of Programming Languages, Salt Lake City.

Milner, Robin. (1978). A theory of type polymorphism in programming languages. Journal
of computer and system science, 17(3), 348–375.

Journal of Functional Programming 49

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The Definition
of Standard ML (revised). The MIT Press.

Mitchell, J. C., & Harper, R. (1988). The essence of ML. Pages 28–46 of: ACM (ed), POPL
’88. proceedings of the conference on principles of programming languages, january 13–
15, 1988, san diego, CA. New York, NY, USA: ACM Press.

Mitchell, John C. (2000). Foundations for programming languages. Third edn. Cambridge,
MA: MIT Press.

Ohori, Atsushi. 1989a (September). A Simple Semantics for ML Polymorphism. Pages
281–292 of: Proceedings of the 4th international conference on functional programming
languages and computer architecture, Imperial College, London.

Ohori, Atsushi. (1989b). A study of semantics, types, and languages for databases and
object-oriented programming. Ph.D. thesis, University of Pennsylvania.

Owe, Olaf. (1993). Partial logics reconsidered: A conservative approach. Formal aspects
of computing, 5(3), 208–223.

Peyton Jones, Simon (ed). (2003). Haskell 98 language and libraries : The revised report.
Cambridge University Press.

Plasmeijer, Rinus, & van Eekelen, Marko. (1999). Functional programming: Keep it clean:
A unique approach to functional programming. Acm sigplan notices, 34(6), 23–31.

Reynolds, J. C. (1974). Towards a theory of type structure. Pages 408–425 of: Robinet,
B. (ed), Programming symposium. LNCS V 19. Springer Verlag. (LA has).

Schmidt, David A. (1986). Denotational semantics. Boston: Allyn and Bacon.

Smyth, Michael B., & Plotkin, Gordon D. (1982). The category-theoretic solution of
recursive domain equations. Siam journal on computing, 11(4), 761–783. Also Report
D.A.I. 60, University of Edinburgh, Department of Artificial Intelligence, December
1978.

Thompson, Simon. (1995). A Logic for Miranda, Revisited. Formal aspects of computing,
7, 412–429.

Thompson, Simon. (1999). Haskell: The Craft of Functional Programming (2nd Edition).
Addison-Wesley.

Wadler, Phillip. (1992). The essence of functional programming. 19th popl, Jan., 1–14.

50 William L. Harrison and Richard B. Kieburtz

Appendix
This appendix contains proofs of Lemmas 2 and 3.

Lemma 2
Let p be a pattern and preds = [P1, P2, . . .] be a sequence of predicate formulas
such that length preds ≥ length (fringe p). Then

patPred p preds =
(fst (patPred p (take (length (fringe p)) preds)), drop (length (fringe p)) preds)

(22)
Proof: by induction on the structure of a pattern. Each equation in the definition
of patPred corresponds to one such case.

Case p = x, an individual pattern variable.

patPred (Pvar x) (P : preds)
= (P, preds)
= (fst (patPred (Pvar x) [P]), drop (length [x]) (P : preds))

Case p = , a wildcard pattern.

patPred (Pwildcard) preds
= (Univ, preds)
= (fst (patPred (Pwildcard) []), drop (length []) preds)

Case p = ∼p′, an irrefutable pattern. Recall that fringe ∼p′ = fringe p′. There are
two subcases: If take (length (fringe p′)) preds = [Univ, . . . , Univ] then

patPred (Ptilde p′) preds
= (Univ, drop (length (fringe p′)) preds)
= (fst (patPred (Ptilde p′) (take (length (fringe p′)) preds)),

drop (length (fringe p′)) preds)

Otherwise,

patPred (Ptilde p′) preds = patPred p′ preds

for which we assume the assertion holds as a hypothesis of induction.
Case p = Cn p1 . . . pk, a pattern formed of a constructor applied to k arguments.

(The enumeration index, n, is assumed to be unique to the constructor sym-
bol.) Assume as a hypothesis of induction that equation (22), holds for the
first sub-pattern, p1. To prove the assertion of the lemma for constructor pat-
terns, we appeal to an inner-level induction on the number of arguments, k.
Note that fringe (Cn p1 . . . pk) = foldr (++) [] [fringe p1, . . . , fringe pk]. The
cases are:

k = 0. Then

patPred (Pcondata n []) preds
= (Strong (ConPred n []), preds)
= (fst (patPred (Pcondata n []) []), preds)
= (fst (patPred (Pcondata n (take 0 preds))), drop 0 preds)

which satisfies equation (22).

Journal of Functional Programming 51

k = j + 1. Then

patPred (Pcondata n ((s1, p1) : pats)) preds
= let (pr1, preds1) = patPred p1 preds

(prs, preds′) = patPred (Pcondata n pats) preds1
in (Strong (ConPred n (ifStrict s1 pr1 : extract pr list prs)), preds′)

From the definitions in Figure 5 we note that either ifStrict s1 p1 = p1 or,
in case s1 = Strict and p1 is not already a strong predicate, ifStrict s1 p1

lifts the predicate p1 to the strong modality. In either case, any term that
satisfies ifStrict s1 p1 is assured to satisfy p1.
As a hypothesis of the inner-level induction, assume that equation (22)
holds for the pattern Pcondata n pats, where length pats = j. That is,

patPred (Pcondata n pats) preds1 =
(fst (patPred (Pcondata n pats)

(take (length (fringe (Pcondata n pats))) preds1)),
drop (length (fringe (Pcondata n pats))) preds1)

Assume as a hypothesis of the top-level induction that (22) holds for the
first pattern, p1, giving

patPred p1 preds= (fst (patPred p1 (take (length (fringe p1)) preds),
drop (length (fringe p1)) preds)

= (pr1, preds1)

Observing that

length (fringe (Pcondata n ((s1, p1) : pats))) =
length (fringe p1) + length (fringe (Pcondata n pats))

and using the definition of patPred from Figure 5, a straightforward alge-
braic manipulation shows that equation (22) is satisfied for a constructor
pattern that has k arguments. This completes the inner-level induction.

Having discharged the proof for all cases, it follows by induction on the structure
of patterns that the assertion of the lemma holds for all patterns.

�

Lemma 3
Let p be a pattern and preds = [P1, P2, . . .] be a sequence of predicate formulas such
that length preds ≥ length (fringe p). Since fringe p can contain no repeated occur-
rences of variables, the association list, zip (fringe p) (take (length (fringe p)) preds),
can be interpreted as a substitution of predicates for variables. The following pred-
icate relation holds for all predicate-derived patterns:

π(p) preds � p ‘subst’ zip (fringe p) (take (length (fringe p)) preds) (23)

Proof: by induction on the structure of a pattern.

Case p = x, a variable. Then fringe p = [x], π(p) [P1, . . .] = P1 and
p ‘subst’ [(x, P1)] = P1. Since P1 � P1, equation (23) is satisfied.

52 William L. Harrison and Richard B. Kieburtz

Case p = , the wildcard pattern. Then π(p) preds = Univ � ‘subst’ [], and (23)
is satisfied.

Case p = ∼p′, an irrefutable pattern. Then fringe p = fringe p′. There are two cases.
If take (length (fringe p)) preds) = [Univ, . . . , Univ] then π(p) preds = Univ and
equation (23) is satisfied (trivially). Otherwise, π(p) preds = π(p′) preds. As
a hypothesis of induction, we assume that (23) holds for for the sub-pattern,
p′. Therefore (23) holds also for the irrefutable pattern.

Case p = C(k) p1 · · · pk, a constructor pattern. Then

fringe p = foldr (++) [] [fringe p1, . . . , fringe pk]

To carry out the proof for a constructor pattern, we introduce an inner level
of induction over the number of arguments, k.

k = 0: π(Cn) [] = $Cn � Cn = Cn ‘subst’ []
k = j + 1: As a hypothesis of the outer level, structural induction, assume

the assertion of the lemma,(23), holds for the first argument pattern,

π(p1) (take (length (fringe p1)) preds) �
p1 ‘subst’ zip (fringe p1) (take (length (fringe p1)) preds)

As a hypothesis of the induction on the number of arguments, assume that
(23) holds for the j-argument constructor pattern:

π(Cn p2 · · · pk) (drop (length (fringe p1)) preds) �
Cn p2 · · · pk ‘subst’ zip (fringe (Cn p2 · · · pk))

(drop (length (fringe p1)) preds)

A necessary condition for the above partial order is that the predicate
relation holds for the pattern predicated derived from the argument pat-
terns:

π(pi) (take (length (fringe pi))
(drop (sum [length (fringe p1), . . . length (fringe pi−1)]) preds))

�
pi ‘subst’ zip (fringe pi) (take (length (fringe pi))

(drop (sum [length (fringe p1), . . . length (fringe pi−1)]) preds))
for all i ∈ [2..k]

These conditions, together with the assumed ordering relation for the
predicate derived from pattern p1 is sufficient to establish (23) for the
k-argument constructor pattern.

Thus the conclusion of the lemma follows by structural induction.

�

