
A Lexer for Haskell in Haskell (first draft)

Thomas Hallgren

March 7, 2003

Abstract

We describe a lexer for Haskell in Haskell. The lexer is implemented
in a modular way, reflecting the structure of the description of the lexical
syntax in the Haskell report. The largest part – the token recognizing
function – is generated from (a transliteration of) the lexical grammar in
the Haskell report using a regular expression compiler. The speed of the
lexer is comparable to that of a handwritten, monolithic lexer.

1 Introduction

One would have hoped that these days, the syntax is the least controversial part
of a programming language specification, and that implementing a parser for
the language would be a routine job, something that is not worth writing a
scientific paper about. However, as witnessed by many lengthy discussions on
the Haskell mailing list, this does not appear to be true for Haskell. The syntax
is complex, and the specification in the Haskell report leaves room for many
questions.

In spite of the complexities of the Haskell syntax, it appears that solving
the problem of parsing Haskell has not been seen as prestigious enough that
someone has been willing to invest the time to do it well.

Being inspired by Typing Haskell in Haskell [Jon99], it seems like a good
idea to work toward Parsing Haskell in Haskell, i.e., building an executable
specification of the Haskell syntax. In this paper, we give a first contribution
toward that goal by creating

• A Lexer for Haskell in Haskell that is simple, correct, efficient and reusable.

Correctness means that we want the lexer to agree with the specification, that
is with what is written in the Haskell report. Simplicity means that we want
it to be easy to see that the implementation agrees with the specification. We
want efficiency, so that the lexer is not merely a specification, but, like the
specification of the Haskell module system presented in [DJH02], also a practi-
cal implementation that can be used in a Haskell compiler without slowing it
down too much. We want re-usability, so that we can easily adapt the lexer to

1

changes of the Haskell language (and there have been subtle changes in amost
every(?) new version of the Haskell report), and so that the lexer can be used
in tools other than compilers (for example, in an HTML renderer with syntax
highlighting).

The goals are not independent: simplicity is likely to be good both for
correctness and re-usability. In fact, becase the specification isn’t formal, we
cannot expect a formal proof of correctness, but instead rely on simplicity to
convince ourselves that the implementation is correct.

2 Method

Most of the work was done during a warm and sunny summer week in 1999.
The final parts, nested comments and layout processing, were added in 2001.

The goal was to use the (original) Haskell 98 Report [Je99] as the only
source of information, preferably restricting attention to Appendix B, the syntax
reference. The author tried to forget everything (he thought) he already knew
about Haskell.

Appendix B consists of some segments of pseudo-formal notation, glued to-
gether and clarified by informal text. Unfortunately, the description of the
lexical syntax is not self-contained. For example, it was necessary to consult
Chapter 2, where you are referred to (the wrong section of) Chapter 5, to find a
confirmation that qualified names are part of the lexical syntax (i.e., that spaces
are not allowed in M.x).

Fortunately, these problems appear to be fixed in the revised Haskell 98
report [Jon03], and some confusing formulations have been removed.

3 Existing solutions

We have taken a quick look at the following Haskell implementations1:
Source Lexer language Lexer size
The hssource library [M+] Haskell 98 ∼ 1300 lines
NHC [NHC02] Haskell 98 ∼ 1200 lines
GHC [GHC02] nonstandard Haskell ∼ 1300 lines
HBC [Aug98] C ∼ 1700 lines
Hugs [Hug02] C ∼ 2000 lines

In all cases, the lexer is handwritten, essentially as a large monolithic chunk
of code, without much separation of concerns. As a result, it would presumably
be difficult to verify the correctness of these lexers, and it has probably been
difficult to adapt them to new versions of Haskell (1.2, 1.3, 1.4, 98, revised 98...)
without introducing bugs. Only one of the goals stated in the introduction is
achieved: efficiency.

Monolithic solutions are complex because of the many non-trivial subtask
involved:

1The sizes given here should be taken with a grain of salt.

2

• removing nested comments, preserving position information, interacting
with the parser to implement the layout rule. recognizing string literals,
recognizing simple identifiers, recognizing qualified identifiers, recognizing
keywords and reserved operators. ...

Preserving position information is not optional in Haskell: it is needed to im-
plement the layout rule.

One tempting approach to deal with the complexity of a Haskell lexer is of
course to split the lexer into a number of simpler passes. At first sight, it may
seem possible to implement many of the subtasks mentioned above separately,
but it turns out not to be so easy. We give a few examples below.

3.1 Hopeless attempts

===> TODO: Skip this entire section!?

Nested comments It seems easy to define a function to recognize nested
comments; they are enclosed in {- -} brackets and have to be properly nested.
However, doing this as a preprocessing pass, separately from the rest of the
lexical analysis, seems impossible, because {- and -} do not always start and
end comments:

code -- comment -} comment

code -- comment {- comment -} comment

code ----> code {- comment -} code

code "{-" code "-}" code

code " \"{-" code

To correctly identify nested comments, it appears that we also have to correctly
identify one-line comments and string literals. Recognizing one-line comments
also requires recognizing symbolic identifiers (an extra complexity that was in-
troduced in Haskell 98). Recognizing string literals is nontrivial because of the
escape sequences.

Qualified names At first it may seem that recognition of qualified names
could be added as a post-processing step to a lexer that only recognizes simple
names by simply gluing tokens together. However, in Haskell, a qualified name
M.x is treated as one lexical symbol, and extra space is not allowed before or
after the dot, so it seems difficult to get the post-processing right if the simple
lexer discards white space. Even if white space is preserved, there are some
additional pitfalls with a post-processing solution. For example, a simple lexer
would presumably treat M.. as two tokens: M followed by the reserved operator
... With qualified names, it should be treated as the operator . qualified by
M. This could be handled as a special case, but then the post-processor solution
does not seem like a particularly elegant solution anymore.

3

Keywords Keywords is another candidate for recognition in a post-processor.
But keywords interact with qualified names, for example while M.them is a
qualified name, M.then is three tokens, the last one being the keyword then.

4 A better solution

To achieve our goals of simplicity and correctness, it seems like a good idea
to structure the implementation of the lexer according to the structure of the
specification given in Appendix B of the Haskell 98 report (Chapter 9 in the
revised report).

Appendix B of the Haskell report contains the following lexer related parts:

• B.2 The lexical syntax: this is a BNF-like description of what a Haskell
program looks like on the lexical level.

• B.3 Layout: this section discusses several relevant issues:

– How to compute the indentation of a lexeme,

– How to insert the additional tokens 〈n〉 and {n} to indicate layout.

– Layout contexts and the function L that implements the layout rule.

Our implementation follows this structure, and below we describe the parts in
turn. The reader is encouraged to have a copy of the Haskell report handy for
reference.

4.1 The lexical syntax

From the lexical syntax in Appendix B.2, we construct a token recognizing
function called haskellLex. As can be seen in Figure 1, the input is a string
(a Haskell module to be parsed), and the output is a list of tokens, represented
as pairs of values from the type Token that classifies tokens (see Appendix A),
and a string of the characters that form the token. The function haskellLex
preserves white space, so it has a very simple inverse: concatMap snd.

In previous lexers for Haskell, this part is typically implemented as a hand-
written function that in addition to recognizing tokens also computes positions
and discards white space. Since the function (haskellLex) preserves white
space, we can deal with those issues separately. This solution also allows the
function to be reused in applications where it is desirable to preserve white
space.

While this separation of concerns makes haskellLex a much easier function
to implement by hand, we have gone one step further: we have simply translit-
erated the lexical grammar, using a set of regular expression combinators, and
automatically generated the function from the grammar using a regular expres-
sion compiler.

The transliterated lexical syntax is included in Appendix B, and the com-
binators used are explain below. While the regular expression compiler is not

4

module HsLex(haskellLex) where

import Char

import HsLexUtils(Token(..),nestedComment, ...)

type Lexer = Input -> Output

type Input = String

type Output = [(Token,String)]

haskellLex :: Lexer

haskellLex is = ...

...

Figure 1: The output of the lexer generator

-- This program generates the core of lexical analyzer for Haskell

import HaskellLexicalSyntax(program) -- The lexical syntax specification

import LexerGen(lexerGen) -- The lexer generator

main = lexerGen "HsLex" "haskellLex" program

Figure 2: The lexer generator applied to the lexical syntax of Haskell

included here, its application to the Haskell lexical grammar is shown in Fig-
ure 2. Notice that it is the nonterminal program that specifies what a Haskell
program is on the lexical level, and that is the nonterminal from which we
generate our token recognizing function.

While the generated function haskellLex is too big to be included here,
Appendix H shows what the regular expression compiler produces for a simpler
regular expression.

The regular expressions combinators are summarized in Table 1. To specify
output, our combinators include the combinator o, and the lexical grammar
as been augmented to indicate what output to produce. So, the combinators
do not specify pure regular expressions, but rather transducers, i.e., automata
that have both input and output transitions. This is a slight deviation from
standard text book methods, where output is represented by final states rather
than output transitions.

The transducer expressions are compiled in the same way as regular expres-
sions are typically compiled: an expression is converted to a NFA (nondeter-
ministic finite automaton) and the NFA is converted to a DFA (deterministic
finite automaton). The only difference is that some transitions denote output
and some denote input.

In the Haskell function generated from the DFA, input transitions are given
higher priority than output transitions. This means that as long as more input
can be consumed, no output will be produced. This is how the maximal much

5

Operation Text book Haskell Report Combinator
The empty string ε e
One character c c t ’c’
Optional r? [r] opt r
Sequence r1r2 r1r2 r1 & r2

Alternative r1|r2 r1|r2 r1 ! r2

Zero or more r∗ {r} many r
One or more r+ some r
Difference r1<r2>

Output o t

Table 1: Comparing our regular expression combinators to the notation used in
the Haskell report and standard text book notation.

rule is implemented.
The Haskell report uses one nonstandard operation: difference r1<r2>. It

is used to exclude keywords from the productions for identifiers, and in other
similar situations. Our combinators do not include the difference operator2,
and we have simply omitted such exclusions from the grammar. This makes
the grammar ambiguous, resulting in an automaton that, e.g., after seeing the
string then could output either a Varid token or a Reservedid token. The
ambiguity is resolved by choosing the earlier token in the token data type. The
token type thus has to be in the Ord class, and the order has to be chosen so
that the ambiguities are resolved correctly.

4.2 Computing source positions and removing white space

The output from the token recognizing function haskellLex is fed to a the
function addPos, that adds source positions, and then to the function rmSpace
that removes white space.

type Pos = (Int,Int) -- (row,column)

type PosToken = [(Token,(Pos,String)]

addPos :: [(Token,String)] -> [PosToken]

rmSpace :: [PosToken] -> [PosToken]

The implementation of these functions is included in Appendix D.
We compute both the horizontal and vertical position of every token. While

this is more than we need to implement layout, accurate source positions are of
course useful in error messages.

While the Haskell report specifies that tab stops are 8 characters apart, it
does not say where the first tab stop is located. For the implementation of
function addPos, we have, in apparent agreement with other Haskell implemen-
tations, assumed that the first tab stop is located in column 1.

2It is sad that the Haskell report doesn’t say where one can find a description of how to
implement it.

6

4.3 Adding layout indicator tokens

Adding the layout indicating tokens 〈n〉 and {n}, is implemented by the separate
function layoutPre,

layoutPre :: [PosToken] -> [PosToken]

The implementation of layoutPre is included in Appendix E.

4.4 Layout contexts and the function L

The function L is responsible for implementing the layout rule, i.e., inserting {
and } tokens that are implied by layout. It uses a layout context stack to do its
job, and also needs cooperation with the parser.

If it weren’t for the need for cooperation with the parser, the function L could
have been implemented as a pure function of type [PosToken] -> [PosToken],
pretty much as it is presented in the Haskell report.

To implement the interaction with the parser, we use a parser monad that
as part of its state has the remaining tokens, and the current layout context
stack:

type LayoutContextStack = [Int]

type State = ([PosToken],LayoutContextStack)

-- The parser monad:

newtype PM a = PM (State->Either Error (a,State))

type Error = String

get :: PM State

set :: State -> PM ()

The parser (which is was inherited from the hssource library) interacts with the
lexer through two functions:

token :: PM PosToken

popContext :: PM ()

The function token is called when the parser needs a new token from the lexer
and popContext is called when the parser has determined that a } has to be
inserted to avoid a syntax error. These two functions, which together implement
the function L, are included in Appendix F. Most of function L appears as a
auxiliary function in the definition of token.3

4.5 Additional pieces

Nested comments can not be described by regular expressions, so recognize
them, the generated function haskellLex calls a handwritten function nestedComment,
which is included in Appendix G, together with some other auxiliary functions
that are called from haskellLex.

3Note that we had to deviate from the report and call it l, since L is not allowed as a
function name in Haskell.

7

5 Putting it together

The part of the lexing that is independent of the parser is combined into a
function called lexerPass1:

lexerPass1 :: String -> [PosToken]

lexerPass1 = layoutPre . rmSpace . addPos . haskellLex

The output from lexerPass1, together with an empty layout context stack, is
used as the initial state when parsing a Haskell file:

parseFile :: Monad m => PM a -> String -> m a

parseFile (PM p) s =

case p (lexerPass1 s,[]) of

Left err -> fail err

Right (x,_) -> return x

6 Evaluation

The lexer described in this paper has been developed and used as part of a
Haskell front-end in the Programatica project [Pro02]. It is based on code from
the hssource library [M+], so we mostly compare with the lexer from that library.

While the lexer has been replaced completely, the parser used in the Progra-
matica Haskell front-end remains essentially the same as the one in the hssource
library.

Below, we briefly discuss to what extent the goals stated in the introduction
have been achieved.

6.1 Simplicity

Using size as a measure of simplicity:

• The old handwritten lexer for Haskell: 664 lines

• The regular expression compiler: 678 lines

• The transliterated lexical syntax for Haskell: 193 lines

• The new layout processing: 100 lines

Even when including the (reusable) regular expression compiler, the new lexer
is not much larger than the old lexer. It is enough to implement two lexers to
break even :-)

8

6.2 Efficiency

Regarding speed, the new lexer+parser seems to be 10-15 percent slower than
the old one. The Haskell Prelude and Standard Libraries (2943 lines) are still
parsed in less than one second (on a 600MHz Pentium III), so the speed is still
more than adequate.

Regarding size, the generated DFA has 153 states, and the Haskell code for
the token recognizing function is 5600 lines long. The lexer is thus considerably
larger than the handwritten one (and too big to be included here). When
compiled with ghc-5.04.2 -O, the size of the object code for the module HsLex
is 529KB. As a comparison, our Haskell parser generated by Happy is 740KB,
and the total size of our Haskell front-end is 5458KB.

6.3 Correctness

The original motivation for replacing the hssource library lexer with a com-
pletely new one was that we encountered several bugs in the hssource lexer, and
because of the complexity of the code, fixing the bugs was rather tedious.

After the replacement, we have not had to pay much attention to the lexer.
There has been a small number of changes to the Haskell report (regarding
layout processing) and we have found it easy to adapt our lexer to those changes.

Our new lexer is more modular, the parts are simpler and the structure
follows the structure of the specification in the Haskell report more closely, so it
should be easier to convince oneself that the implementation is correct, and to
maintain correctness when changes are made. In particular, to check that the
transliteration of lexical syntax is correct, a visual inspection should be enough.

Apart from the correct transliteration of the lexical syntax, the correctness
of the generated token recognizing function depends on two more factors:

• The correctness of the regular expression compiler, with respect to the
text book methods it is based on [App98]. This is an independent issue.

• The agreement of the semantics implemented by the regular expression
compiler with the intended semantics of the pseudo-formal specification
in the Haskell report. Due the unfortunate informal style of Haskell report,
we can not make any guarantees about this step.

6.4 Re-usability

The lexer has already been reused in two applications:

• An HTML renderer with syntax highlighting for Haskell [Hal02a]. This
application generates HTML from the output of the function haskellLex,
so the fact that it preserves white space was useful.

• A simple program called stripcomments [Hal02b] that removes comments
and blank lines from Haskell source code. Someone asked for this on the

9

Haskell mailing list, and by re-using the functions haskellLex, addPos
and rmSpace, this simple application was very easy to implement.

6.5 What about Unicode?

The Haskell report states that Haskell uses the Unicode character sets. Our
lexer supports Unicode, provided that it is compiled with a Haskell compiler
that supports Unicode. It also requires that functions in the standard library
module Char support Unicode, since the nonterminals uniWhite, uniSmall,
uniLarge and uniDigit in the lexical syntax are implemented by calls to the
functions isSpace, isLower, isUpper and isDigit, respectively. As far as we
know, the only Haskell compiler that implements this is HBC [Aug98].

7 Conclusion

7.1 Future work

The current solution is far from perfect. Possible improvements include:

• Add conversion of the escapes in character and string literals.

• See if size of the generated DFA can be reduced further...

• Make some of the handwritten parts more readable.

• Make the regular expression compiler more readable.

• Update it to the revised Haskell 98 report.

• Implement the difference operator, so that our lexical grammar can cor-
respond even more accurately to the grammar in the report

• Since the lexical syntax is not specified by a regular expression, but a
context-free grammar, it seems that a parser generator would be a more
appropriate tool than a regular expression compiler...

• Extend the work to a complete Parser for Haskell in Haskell

• ...

Acknowledgements

Thanks to Mark P. Jones for suggesting many improvements.

10

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1998. ISBN 0-521-58274-1.

[Aug98] Lennart Augustsson. HBC. http://www.cs.chalmers.se/∼augustss/hbc/hbc.html,
1998.

[DJH02] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A For-
mal Specification for the Haskell 98 Module System. In Proceed-
ings of the 2002 Haskell Workshop, Pittsburgh, USA, October 2002.
http://www.cse.ogi.edu/∼diatchki/hsmod/.

[GHC02] The Glasgow Haskell Compiler, 2002. http://www.haskell.org/ghc/.

[Hal02a] Thomas Hallgren. Conversion of Haskell source code to HTML.
http://www.cse.ogi.edu/∼hallgren/h2h.html, 2002.

[Hal02b] Thomas Hallgren. stripcomments - a simple tools for re-
moving comments and blank lines from Haskell programs.
http://www.cse.ogi.edu/∼hallgren/stripcomments/, 2002.

[Hug02] Hugs Online. http://www.haskell.org/hugs/, 2002.

[Je99] Simon Peyton Jones and John Hughes (editors). Report on the
Programming Language Haskell 98, a Non-strict, Purely Functional
Language. Available from http://www.haskell.org/definiton/,
February 1999.

[Jon99] M.P. Jones. Typing Haskell in Haskell. In Proceedings of
the 1999 Haskell Workshop, Paris, France, September 1999.
http://citeseer.nj.nec.com/article/jones99typing.html.

[Jon03] Simon Peton Jones, editor. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, April 2003. ISBN
0521826144, http:/www.haskell.org/definition/.

[M+] Simon Marlow et al. The hssource library. Distributed with GHC.

[NHC02] Nhc98. http://www.cs.york.ac.uk/fp/nhc98/, 2002.

[Pro02] The Programatica Project home page.
http://www.cse.ogi.edu/PacSoft/projects/programatica/, 2002.

A The module HsTokens

module HsTokens where

-- Haskell token classifications:

11

data Token

= Varid | Conid | Varsym | Consym

| Reservedid | Reservedop -- | Specialid

| IntLit | FloatLit | CharLit | StringLit

| Special

| Qvarid | Qconid | Qvarsym | Qconsym

| Whitespace

| NestedCommentStart -- will cause a call to an external function

| NestedComment

| Commentstart -- dashes

| Comment -- what follows the dashes

| ErrorToken

| GotEOF

| TheRest

| Layout -- for tagging braces inserted by layout processing

| Indent Int -- <n>, to preceed first token on each line, see Haskell 98, B.3

| Open Int -- {n}, after let, where, do or of, if not followed by a "{"

deriving (Show,Eq,Ord)

B Module HaskellLexicalSyntax

This module is a transcription of the Lexical Syntax given in appendix B.2 of
the Haskell 98 Report, except for character set definitions, which are given in
module HaskellChars (Appendix C).

The grammar below contains extra annotations (not found in the report) to
allow the recognized strings to be paired with token classifications.

module HaskellLexicalSyntax(program) where

import List((\\))

import HaskellChars

import HsTokens

import RegExp

program = many (lexeme ! whitespace)

lexeme = varid & o Varid

! conid & o Conid

! varsym & o Varsym

! consym & o Consym

! literal -- & o Literal

! a special & o Special

! reservedop & o Reservedop

! reservedid & o Reservedid

-- ! specialid & o Specialid -- recognized by the parser

! qvarid & o Qvarid

! qconid & o Qconid

12

! qvarsym & o Qvarsym

! qconsym & o Qconsym

literal = integer & o IntLit

! float & o FloatLit

! char & o CharLit

! string & o StringLit

whitechar = newline ! a vertab ! a formfeed ! a space ! a tab

newline = a creturn & a linefeed

! a creturn ! a linefeed ! a formfeed

whitespace = some whitechar & o Whitespace

! comment & o Comment

! ncomment & o NestedComment

comment = dashes & o Commentstart & many (a cany) & newline

dashes = as "--" & many (aa "-")

opencom = as "{-"

ncomment = opencom & o NestedCommentStart

-- handled by calling an external function

varid = (a small & many (a small ! a large ! a digit ! aa "’")) -- <reservedid>

conid = a large & many (a small ! a large ! a digit ! aa "’")

reservedid =

as"case" ! as"class" ! as"data" ! as"default" ! as"deriving" ! as"do"

! as"else" ! as"if" ! as"import" ! as"in" ! as ! as"infix" ! as"infixl"

! as"infixr" ! as"instance" ! as"let" ! as"module" ! as"newtype"

! as"of" ! as"then" ! as"type" ! as"where" ! as"_"

--specialid = as"as" ! as"qualified" ! as"hiding"

varsym = (a symbol & many (a symbol ! aa ":")) -- <reservedop>

consym = (aa ":" & many (a symbol ! aa ":")) -- <reservedop>

reservedop = as ".." ! as ":" ! as"::" ! as "=" ! as "\\" ! as "|" ! as"<-"

! as "->" ! as "@" ! as "~" ! as "=>"

--specialop = aa "-" ! aa "!" -- recognized by the parser instead

modid = conid

optq = opt qual

qual = modid & aa "."

In the report, qvarid etc include both qualified and unqualified names, but
here they denote qualified names only, this allows qualified and unqualified
names to be distinguished in the parser.

qvarid = qual & varid

qconid = qual & conid

qvarsym = qual & varsym

13

qconsym = qual & consym

decimal = some (a digit)

octal = some (a octit)

hexadecimal = some (a hexit)

integer = decimal

! aa "0" & aa "Oo" & octal

! aa "0" & aa "Xx" & hexadecimal

float = decimal & aa "." & decimal & opt (aa "eE" & opt (aa "-+") & decimal)

char = aa "’" & (a (graphic \\ acs "’\\") ! a space ! escape{-<\&>-}) & aa "’"

string =

aa "\"" & many (a (graphic \\ acs "\"\\") ! a space ! escape ! gap) & aa "\""

escape = aa "\\" & (charesc ! ascii ! decimal !

aa "o" & octal ! aa "x" & hexadecimal)

charesc = aa "abfnrtv\\\"’&"

ascii = aa "^" & cntrl

! as"NUL" ! as"SOH" ! as"STX" ! as"ETX" ! as"EOT" ! as"ENQ" ! as"ACK"

! as"BEL" ! as"BS" ! as"HT" ! as"LF" ! as"VT" ! as"FF" ! as"CR" ! as"SO"

! as"SI" ! as"DLE" ! as"DC1" ! as"DC2" ! as"DC3" ! as"DC4" ! as"NAK"

! as"SYN" ! as"ETB" ! as"CAN" ! as"EM" ! as"SUB" ! as"ESC" ! as"FS"

! as"GS" ! as"RS" ! as"US" ! as"SP" ! as"DEL"

cntrl = a ascLarge ! aa "@[\\]^_"

gap = aa "\\" & some whitechar & aa "\\"

--

aa = a . acs

as = ts . acs

C Module HaskellChars

This module collects the definitions from the Lexical Syntax in appendix B.3
of the (revised) Haskell 98 report that define sets of characters. These sets
are referred to in the rest of the lexical syntax, which is given in module
HaskellLexicalSyntax (Appendix B).

module HaskellChars where

data HaskellChar

-- ASCII characters are represented by themselves

= ASCII Char

-- Non-ASCII characters are represented by the class they belong to

14

| UniWhite -- any UNIcode character defined as whitespace

| UniSymbol -- any Unicode symbol or punctuation

| UniDigit -- any Unicode numeric

| UniLarge -- any uppercase or titlecase Unicode letter

| UniSmall -- any Unicode lowercase letter

deriving (Eq,Ord,Show)

acs = map ASCII

-- Character classifications:

special = acs "(),;[]‘{}"

creturn = acs "\r"

linefeed = acs "\LF"

vertab = acs "\VT"

formfeed = acs "\FF"

space = acs " \xa0"

tab = acs "\t"

uniWhite = [UniWhite]

cany = graphic++space++tab

graphic = small++large++symbol++digit++special++acs ":\"’"

small = ascSmall++uniSmall++acs "_"

ascSmall = acs [’a’..’z’]

uniSmall = [UniSmall]

large = ascLarge++uniLarge

ascLarge = acs [’A’..’Z’]

uniLarge = [UniLarge]

symbol = ascSymbol++uniSymbol

ascSymbol = acs "!#$%&*+./<=>?@\\^|-~"

uniSymbol = [UniSymbol]

digit = ascDigit++uniDigit

ascDigit = acs [’0’..’9’]

uniDigit = [UniDigit]

octit = acs [’0’..’7’]

hexit = digit ++ acs [’A’..’F’] ++ acs [’a’..’f’]

D Module HsLexerPass1

module HsLexerPass1 where

import HsLex(haskellLex)

import HsLexUtils

import HsLayoutPre(layoutPre)

import List(mapAccumL)

default(Int)

The function lexerPass1 handles the part of lexical analysis that can be
done independently of the parser, i.e., the tokenization and the addition of the

15

extra layout tokens 〈n〉 and {n}, as specified in appendix B.3 of the Haskell 98
Report.

type LexerOutput = [(Token,(Pos,String))]

type Lexer = String -> LexerOutput

lexerPass1 :: Lexer

lexerPass1 = lexerPass1Only . lexerPass0

lexerPass1Only = layoutPre . rmSpace

rmSpace = filter (notWhite.fst)

where

notWhite t = t/=Whitespace &&

t/=Commentstart && t/=Comment &&

t/=NestedComment

-- Tokenize and add position information:

lexerPass0 :: Lexer

lexerPass0 = addPos . haskellLex

addPos = snd . mapAccumL pos startPos

where

pos p (t,r) = (nextPos p s,(t,(p,s)))

where s = reverse r

type Pos = (Int,Int)

startPos = (1,1) :: Pos -- The first column is designated column 1, not 0.

nextPos :: Pos -> String -> Pos

nextPos = foldl nextPos1

nextPos1 :: Pos -> Char -> Pos

nextPos1 (y,x) c =

case c of

-- The characters newline, return, linefeed, and formfeed, all start

-- a new line.

’\n’ -> (y+1, 1)

’\CR’ -> (y+1, 1)

’\LF’ -> (y+1, 1)

’\FF’ -> (y+1, 1)

-- Tab stops are 8 characters apart.

-- A tab character causes the insertion of enough spaces to align the

-- current position with the next tab stop.

-- + (not in the report) the first tab stop is column 1.

’\t’ -> (y, x+8 - (x-1) ‘mod‘ 8)

_ -> (y, x+1)

16

E The module HsLayoutPre

This is an implementation of Haskell layout, as specified in appendix B.3 of the
revised Haskell 98 report.

This module contains the layout preprocessor that inserts the extra 〈n〉 and
{n} tokens.

module HsLayoutPre(layoutPre) where

import HsTokens

layoutPre :: [(Token,((Int,Int),String))] -> [(Token,((Int,Int),String))]

layoutPre = indent . open

open = open1

If the first lexeme of a module is not { or module, then it is preceded by {n}
where n is the indentation of the lexeme.

open1 (t1@(Reservedid,(_,"module")):ts) = t1:open2 ts

open1 (t1@(Special,(_,"{")):ts) = t1:open2 ts

open1 ts@((t,(p@(r,c),s)):_) = (Open c,(p,"")):open2 ts

open1 [] = []

If a let, where, do, or of keyword is not followed by the lexeme , the token n
is inserted after the keyword, where n is the indentation of the next lexeme if
there is one, or 0 if the end of file has been reached.

open2 (t1:ts1) | ltok t1 =

case ts1 of

t2@(_,(p@(r,c),_)):ts2 ->

if notLBrace t2

then t1:(Open c,(p,"")):open2 ts1

else t1:t2:open2 ts2

[] -> t1:(Open 0,(fst (snd t1),"")):[]

where

ltok (Reservedid,(_,s)) = s ‘elem‘ ["let","where","do","of"]

ltok _ = False

notLBrace (Special,(_,"{")) = False

notLBrace _ = True

open2 (t:ts) = t:open2 ts

open2 [] = []

The first token on each line (not including tokens already annotated) is
preceeded by 〈n〉, where n is the indentation of the token.

indent (t1@(Open _,((r,c),_)):ts) = t1:indent2 r ts

indent (t1@(t,(p@(r,c),s)):ts) = (Indent c,(p,"")):t1:indent2 r ts

indent [] = []

indent2 r (t1@(_,((r’,_),_)):ts) | r’==(r::Int) = t1:indent2 r ts

indent2 r ts = indent ts

17

F Module HsLexer

This module implements the part of the lexer that interacts with the Happy
parser, i.e., the layout processing.

module HsLexer where

import ParseMonad

import HsTokens(Token(..))

lexer cont = cont =<< token

popContexts, together with the error handling in the Happy parser, imple-
ments the equation dealing with parse-error(t) in the definition of the function
L, in appendix B.3 in the revised Haskell 98 report.

popContext =

do (ts,m:ms) <- get

if m/=0 then set (ts,ms) -- redudant test

else fail "Grammar bug? Unbalanced implicit braces?"

token = uncurry l =<< get

where

-- Here is the rest of the function L in the report:

-- The equations for cases when <n> is the first token:

l ts0@((Indent n,(p,_)):ts) ms0@(m:ms)

| m==n = ok (semi p) ts ms0

| n<m = ok (vrcurly p) ts0 ms

l ((Indent _,_):ts) ms = l ts ms

-- The equations for cases when {n} is the first token:

l ((Open n,(p,_)):ts) (m:ms) | n>m = ok (vlcurly p) ts (n:m:ms)

l ((Open n,(p,_)):ts) [] | n>0 = ok (vlcurly p) ts [n]

l ((Open n,(p,_)):ts) ms = ok (vlcurly p)

(vrcurly p:(Indent n,(p,"")):ts)

(0:ms)

-- Equations for explicit braces:

l (t1@(Special,(_,"}")):ts) (0:ms) = ok t1 ts ms

l (t1@(Layout, (_,"}")):ts) (0:ms) = ok t1 ts ms

l (t1@(Special,(_,"}")):ts) ms = fail "unexpected }"

l (t1@(Special,(p,"{")):ts) ms = ok t1 ts (0:ms)

-- The equation for ordinary tokens:

l (t:ts) ms = ok t ts ms

-- Equations for end of file:

l [] [] = return eoftoken

l [] (m:ms) = if m/=0

then ok (vrcurly eof) [] ms

else fail "missing } at eof"

ok t ts ctx = setreturn t (ts,ctx)

vlcurly p = (Layout,(p,"{"))

18

vrcurly p = (Layout,(p,"}"))

semi p = (Special,(p,";"))

G Module HsLexutils

module HsLexUtils(module HsLexUtils,Token(..)) where

import HsTokens

gotEOF [] = []

gotEOF as = [(GotEOF, as)]

gotError as is =

(ErrorToken, as):

if null is then [(GotEOF,[])] else [(TheRest,reverse (take 80 is))]

-- Not reversing the token string here seems to save about 10% of the time

output token as cont = (token,as):cont

-- #ifndef __HBC__

isSymbol _ = False

-- #endif

nestedComment as is next = nest 0 as is

where

nest n as is =

case is of

’-’:’}’:is -> if n==0

then next gotError (’}’:’-’:as) is

else nest (n-1) (’}’:’-’:as) is

’{’:’-’:is -> nest (n+1) (’-’:’{’:as) is

c:is -> nest n (c:as) is

_ -> gotError as is -- EOF inside comment

H Sample output from the lexer generator

Running the following program,

import LexerGen(lexerGen)

import RegExp

import HaskellChars

import HsTokens

main = lexerGen "TstHsLex" "tstLex" r

where

r = many (r1!r2!r3)

r1 = some (aa ’a’ ! aa ’b’) & aa ’c’ & o Varid

r2 = some (aa ’a’) & o Reservedid

19

r3 = aa ’d’ & o Special

aa = t . ASCII -- recognize one ASCII character

produces the following Haskell module:

module TstHsLex (tstLex) where

import Char

import HsLexUtils

type Output = [(Token,String)]

type Input = String

type Acc = Input -- reversed

type Lexer = Input -> Output

type LexerState = (Acc->Lexer) -> Acc -> Lexer

tstLex :: Lexer

tstLex is = start1 is

start1 :: Lexer

start1 is = state1 (\ as is -> gotError as is) "" is

state1 :: LexerState

state1 err as [] = gotEOF as

state1 err as iis@(i:is) =

case i of

’b’ -> state3 err (i:as) is

’a’ -> state4 err (i:as) is

’d’ -> state5 err (i:as) is

_ -> err as iis

state2 :: LexerState

state2 err as is = output Varid as (start1 is)

state3 :: LexerState

state3 err as [] = err as []

state3 err as iis@(i:is) =

case i of

’c’ -> state2 err (i:as) is

’a’ -> state3 err (i:as) is

’b’ -> state3 err (i:as) is

_ -> err as iis

state4 :: LexerState

state4 err as [] = err as []

where err _ _ = output Reservedid as (start1 [])

state4 err as iis@(i:is) =

case i of

’c’ -> state2 err (i:as) is

’b’ -> state3 err (i:as) is

’a’ -> state4 err (i:as) is

20

_ -> err as iis

where err _ _ = output Reservedid as (start1 iis)

state5 :: LexerState

state5 err as is = output Special as (start1 is)

21

