
Fine Control of Demand in Haskell?

William Harrison, Tim Sheard, and James Hook

Pacific Software Research Center
OGI School of Science & Engineering
Oregon Health & Science University
{wlh,sheard,hook}@cse.ogi.edu

Abstract. Functional languages have the λ-calculus at their core, but
then depart from this firm foundation by including features that alter
their default evaluation order. The resulting mixed evaluation—partly
lazy and partly strict—complicates the formal semantics of these lan-
guages. The functional language Haskell is such a language, with features
such as pattern-matching, case expressions with guards, etc., introduc-
ing a modicum of strictness into the otherwise lazy language. But just
how does Haskell differ from the lazy λ-calculus? We answer this ques-
tion by introducing a calculational semantics for Haskell that exposes
the interaction of its strict features with its default laziness.

1 Introduction

“Real” functional programming languages are neither completely lazy nor com-
pletely strict—rather, they are a mixture of the two. Functional languages com-
monly contain constructs which alter the default evaluation strategy to make
programs more efficient or useful in some respect. So-called strict languages like
ML[9] and Scheme[1, 3] both contain a lazy if-then-else, without which program-
ming in them would be much more difficult. Haskell[13] is rife with features
perturbing its default lazy evaluation to allow control of demand (primarily for
reasons of efficiency). Now at the heart of real functional languages lie various
flavors of the λ-calculus (i.e., strict and lazy), and the semantics of these have
been well-understood[5, 19] for some time. But just how do the semantics of real
languages with messy, mixed evaluation relate to these textbook examples? In
this paper, we answer this question for a large fragment of Haskell[13].

The contributions of the present work are three-fold. We demonstrate tech-
niques for rigorously specifying “mixed” languages. Many of these techniques—
particularly the development of nested patterns—apply to the semantics of func-
tional languages in general. We provide a large case study of the development of
a formal language specification from an informal one. The Haskell98 report[13]

? Published in the proceedings of the Sixth International Conference on the Mathemat-
ics of Program Construction, Dagstuhl, Germany, in July 2002. The work described
here was supported in part by National Science Foundation Grant CDA-9703218
and the M.J. Murdock Charitable Trust.

describes Haskell in a semi-formal manner, and in many instances, these de-
scriptions guided the development of the formal specification. Finally, this work
presents a dynamic semantics for a larger fragment of Haskell (including essen-
tially everything but overloading[6, 7]) than has ever been gathered together in
one place before.

Haskell contains a large number of constructs allowing some control over
evaluation and, thus, departing from its standard lazy evaluation. We say that
such constructs introduce “fine control of demand,” because they all make subtle
changes to the default lazy evaluation strategy of Haskell, and all for compelling
reasons. The Haskell features with fine control of demand are: nested patterns,
case expressions and let declarations, guards and where clauses on equations,
strict constructor functions, the newtype datatype definition facility, and the seq

operator. This paper presents a model for all of these features.
In this paper we present a calculational semantics which provides a unified

model of these constructs and their interactions with Haskell’s other features. By
calculational semantics, we mean a meta-circular interpreter[1] for Haskell, writ-
ten in Haskell. We distinguish the calculational approach to language definition
taken in the present work from a denotational one, although the two are similar
in form and spirit. The semantics presented here is a Haskell program, but it
has been designed using standard techniques and structures from programming
language semantics.

The challenge we confronted immediately in writing this language specifica-
tion arose from the fact that these evaluation control constructs interact with
one another in ways that were difficult to understand. Because of this interac-
tion, it was very easy to write a language definition that was either too lazy or
too strict. Automated support (in the form of type-checking and unit testing of
specifications) was very helpful in eliminating bugs and establishing confidence
in the correctness of the definition.

An alternative to the calculational approach to defining languages advocated
here would be to provide a purely formal mathematical specification (i.e., a set
of equations on paper). But writing the semantics as a functional program has a
number of advantages over this approach. The language specification presented
here is both type-checked and executable. Subtle errors may be caught and more
easily corrected in a type-checked environment. The interpreter presented here
has been tested on a large number of examples. Unit testing was invaluable in
identifying problems in earlier versions of this semantics, and such problems may
well have been overlooked in a purely mathematical specification. Indeed, several
earlier, purely formal mathematical specifications for nested pattern matching
proved either too lazy or too strict, and having an executable version helped us
to expose and isolate the subtleties involved.

1.1 Rationale

As part of the Programatica[18] project at the Pacific Software Research Center,
we are attempting to develop both a formal basis for reasoning about Haskell
programs, and automated tools for mechanizing such reasoning. An important

part of our work is to develop a logic with which to manipulate Haskell terms,
and a standard model is required to establish the soundness of this logic. This
led us to the literature, which to our surprise, was lacking in formal descriptions
of the big picture of Haskell. There are plenty of papers about particular features
of Haskell, (its laziness[12], its class system[7], etc.) but very little work which
unifies the essence of Haskell with all the fine-control mechanisms that have been
added and refined over the years.

The Haskell98 report[13] uses a strategy of translating many complex con-
structs into a simpler core language[14], that is really just a slightly extended
lambda-calculus. However, the translation-based approach, while useful and in-
tuitive, is problematic as a semantic definition (we expand on these issues in
Appendix A). Some of these translations are semantically harmless, amounting
to nothing more than the removal of so-called “syntactic sugar.” However, many
of the translation schemas in the Haskell Report rely on the generation of new
source-level variables. The semantics of languages with variable binding mecha-
nisms are very complex, and when one defines a language feature by a translation
that introduces new variables, one leaves the well-understood semantic setting
of domains and continuous functions, and moves into a much more complicated
world. Recent work on languages with binding mechanisms suggests that these
kinds of transformations are by no means trivial to model correctly[10, 16]. An-
other serious defect with the translation-based approach is that it fails to be
compositional. For this reason we eschew such techniques when there are rela-
tively simple alternatives we can adapt from denotational semantics. However,
many of the specifications presented here are inspired by the translations given
in the Haskell98 report, and we compare our definitions with those of the report
when appropriate.

Although the semantic metalanguage here is Haskell, care has been taken to
use notation which will be recognizable by any functional programmer. However
unlike the languages ML[9], Miranda[11], Scheme[1, 3], and Clean[17], Haskell
does have built-in monads, and so we give an overview here of Haskell’s monad
syntax1. The semantics relies on an error monad[8], which is built-in to Haskell
as the Maybe monad. The structure of the Maybe monad, its unit return, and its
bind (>>=) are given as:
data Maybe a = Just a | Nothing (>>=) :: Maybe a -> (a->Maybe b)->Maybe b

return :: a -> Maybe a (Nothing >>= f) = Nothing

return = Just (Just x >>= f) = f x

do { y <- x ; f } = (x >>= (\y->f))

Haskell has an alternative syntax for bind (>>=) called “do notation” which is
defined above.

2 The Abstract Syntax

Haskell is a rich language with many features, and the sublanguage presented
here identifies 9 different syntactic categories. These categories include names,
1 We assume the reader has some familiarity with monads[20, 8].

type Name = String

data Op = Plus | Mult | IntEq | IntLess

data LS = Lazy | Strict deriving Eq

data P --- Nested, Linear (i.e., no repetition of variables) Patterns

= Pconst Integer -- { 5 }

| Pvar Name -- { x }

| Ptuple [P] -- { (p1,p2) }

| Pcondata Name [P] -- data T1 = C1 t1 t2; {C1 p1 p1} = e

| Pnewdata Name P -- newtype T2 = C2 t1; {C2 p1} = e

| Ptilde P -- { ~p }

| Pwildcard -- { _ }

data E --- Haskell Expressions

= Var Name -- { x }

| Const Integer -- { 5 }

| Undefined -- { undefined }

| App E E -- { f x }

| Abs [P] E -- { \ p1 p2 -> e }

| TupleExp [E] -- { (e1,e2) }

| ConApp Name [(E,LS)] -- data T1 = C1 t1 t2; p = {C1 e1 e2}

| NewApp Name E -- newtype T2 = C2 t1; p = {C2 e1}

| Seq E E -- { seq e1 e2 }

| Bin Op E E -- { e1 + e2 }

| Cond E E E -- { if e1 then e2 else e3 }

| Let [D] E -- { let x=e1; y=e2 in e3 }

| Case E [Match] -- { case e of p -> b where ds ; ... }

type Match = (P,B,[D]) -- case e of { pat -> body where decs }

type Clause = ([P],B,[D]) -- f { p1 p2 = body where decs }

data D --- Declarations

= Fun Name [Clause] -- f p1 p2 = b where ds

| Val P B [D] -- p = b where ds

data B -- Bodies

= Guarded [(E,E)] -- f p { | e1 = e2 | e3 = e4 } where ds

| Normal E -- f p = { e } where ds

Fig. 1. Abstract Syntax of Haskell Sublanguage

operators, strictness annotations, matches, clauses, bodies, expressions, declara-
tions, and patterns. In Figure 1 we display the data definitions in Haskell that
represent our abstract syntax. Our definitions are conventional and we have used
comments to relate the abstract syntax to the concrete syntax of Haskell. The
missing syntax, necessary to complete a Haskell definition, has mostly to do with
the module system, classes, list comprehensions, and the do notation.

-- Scalar, function, and structured data values

data V = Z Integer | FV (V -> V) | Tagged Name [V]

-- Environments bind names to values

type Env = Name -> V

-- Meanings for expressions, patterns, bodies, and declarations

mE :: E -> Env -> V mB :: B -> Env -> Maybe V

mP :: P -> V -> Maybe [V] mD :: D -> Env -> V

Fig. 2. Calculational Semantics of Haskell

3 A Model for Haskell

This section presents a calculational model of Haskell as a compositional meta-
circular interpreter, and Figure 2 presents the definitions of the semantic values
V, environments Env, and the types of the semantic functions for expressions
(mE), patterns (mP), bodies (mB), and declarations (mD). Semantic values are con-
structed in a standard way, corresponding to a universal domain construction[5]
in denotational semantics. Environments map names to values. All of the se-
mantic functions are compositional: the meaning of any term from the syntactic
categories E, P, B, and D depends solely on the meaning of its subterms.

We model laziness in Haskell using the laziness of the metalanguage (i.e.,
Haskell) and to some degree this limits the generality of the semantics presented
here. An alternative we have explored is a Reynolds-style monadic interpreter[2]
which models laziness explicitly. The advantage of this Reynolds-style approach
is that the resulting semantics could be executed in any functional language—
even strict languages like ML and Scheme. But the disadvantage is the unavoid-
able loss of precision in the typing of the semantics. In a Reynolds-style monadic
interpreter, all semantic functions are monadically-typed, and it is difficult in
such a setting to distinguish clearly between the “pure” value world of expres-
sions and declarations (i.e., mE and mD) and the computational world of patterns
and bodies (i.e., mP and mB) as we do here.

3.1 Modeling failure

In Haskell, there are several distinct kinds of failure, only one of which is explic-
itly modeled by the Maybe monad.

1. The first kind of failure arises from run-time errors, such as division by zero,
and non-exhaustive pattern match coverage. Taking the head of the empty
list is an example of this kind of failure.

2. The second kind of failure stems from non-termination. This kind of failure
is captured by the interpreter itself not terminating.

3. The third kind of failure stems from an unsuccessful pattern match in a
context where the failure may be trapped and controlled by proceeding to
the next match of a case expression or the next clause of a multi-line function
definition. We model this failure as a computation in the Maybe monad. Such
a trappable failure can become a failure of the first kind, if it occurs in a
context with no next match or clause.

In our semantics, a failure of the first kind is not reported—it causes the
interpreter to terminate unsuccessfully. We assert that programs which fail in
the manner of (1.) and (2.) above denote bottom (where bottom is the semantic
value usually written “⊥”—see Figure 3 below).

3.2 Semantic Operators

Rather than give an explicitly categorical or domain-theoretic treatment here,
we summarize our assumptions as the existence of certain basic semantic oper-
ators (shown in Figure 3). The first three operations, function composition >>>,
function application app, and currying sharp, are basic operations in denota-
tional descriptions of functional programming languages. A call to the currying
operation (sharp n [] beta) converts an uncurried function value beta of the
form (\[v1, . . . , vn]-> body) into an equivalent curried form (\v1-> . . . \vn-> body).
We also assume that each semantic domain corresponding to a Haskell type
contains a bottom element bottom—that is, that each domain is pointed. This
is necessary for the existence of least fixed points, which are themselves neces-
sary for modeling recursion. We define a least fixed point operator, fix, in the
standard way.

The semseq operation requires some explanation. The operation semseq is
meant to specify the Haskell operation seq, and it is named accordingly (for
“semantic seq”). The purpose of seq is to allow Haskell programmers to force
evaluation to occur, and the benefit of seq is only evident in a call-by-need
semantics with its attendant sharing. In such a model, one uses (seq x y) to
force computation of the first operand, so that subsequent evaluations of x will
use its shared value.

In the Haskell98 report[13] (cf. Section 6.2, page 75), (seq :: a->b->b) is
defined by the following equations:

seq ⊥ y =⊥ and seq x y = y, if x 6=⊥

The operator (semseq x y) is defined similarly, although with a subtlety arising
from our model of failure. (semseq x y) evaluates its first operand x sufficiently
to match it to a value in V and, in doing so, may produce a failure of either forms
(1) or (2) listed above in Section 3.1 (and thus ultimately producing bottom).

-- Function composition (diagrammatic) & application

(>>>) :: (a -> b) -> (b -> c) -> a -> c

f >>> g = g . f

app :: V -> V -> V

app (FV f) x = f x

-- Currying

sharp :: Int -> [V] -> (V -> V) -> V

sharp 0 vs beta = beta (tuple vs)

sharp n vs beta = FV $ \ v -> sharp (n-1) (vs++[v]) beta

where tuple :: [V] -> V

tuple [v] = v

tuple vs = Tagged "tuple" vs

-- Domains are pointed & Least fixed points exist

bottom :: a

bottom = undefined

fix :: (a -> a) -> a

fix f = f (fix f)

-- Purification: the "run" of Maybe monad

purify :: Maybe a -> a

purify (Just x) = x

purify Nothing = bottom

-- Kleisli composition (diagrammatic)

(<>) :: (a->Maybe b)->(b->Maybe c)-> a->Maybe c

f <> g = \ x -> f x >>= g

-- Semantic "seq"

semseq :: V -> V -> V

semseq x y = case x of

(Z _) -> y ;

(FV _) -> y ;

(Tagged _ _) -> y

-- Alternation

fatbar :: (a -> Maybe b) -> (a -> Maybe b) -> (a -> Maybe b)

f ‘fatbar‘ g = \ x -> (f x) ‘fb‘ (g x)

where fb :: Maybe a -> Maybe a -> Maybe a

Nothing ‘fb‘ y = y

(Just v) ‘fb‘ y = (Just v)

Fig. 3. Semantic Operators

The last three operations, Kleisli composition (<>), alternation (fatbar), and
purification (purify) are all integral to modeling Haskell constructs involving
fine control of demand such as case expressions, patterns, guards, and multi-line
declarations. The Kleisli composition (<>) is used as the control operator for
pattern matching. Given (f :: a -> Maybe b) and (g :: b -> Maybe c), (f <>

g) is the function which, applied to an input x, performs (f x) first. If (f x)

produces (Just v), then the value of ((f <> g) x) is (g v). Otherwise if (f x)

produces Nothing, then ((f <> g) x) is Nothing. If f is the meaning of a pattern,
then this has similar behavior to pattern matching, because the failure of the
match (i.e., signified by Nothing) is propagated. This will be expanded upon in
Section 5.2.

The fatbar operation2 is integral to the specification of case expressions. In
((fatbar m1 m2) v), if (m1 v) is Nothing (indicating a pattern match failure),
then the result is the same as (m2 v); otherwise, (m1 v) is returned. This se-
quencing behavior is very close to the meaning of the Haskell case expression
(case v of { m1 ; m2 }).

In the semantics, purification distinguishes the computational aspects of the
language from its pure, value aspects, and the operator purify signifies a return
from the computational world to the value world. While fine control of demand
may occur within Haskell expressions based upon pattern-matching, the meaning
of such expressions will be a value in V rather than a computation in (Maybe V),
and the “run” of the Maybe monad, purify, converts a computation into a value.
Note that a match failure (Nothing) is recast as a bottom by purify, and this
reflects unrecoverable errors such as exhausting all the branches of a case.

4 The Meaning of Patterns

Pattern matching of nested patterns is a challenging problem when describing
the semantics of any functional programming language, and we consider our
treatment of nested patterns to be one of the major contributions of this pa-
per. In Haskell, patterns can occur within several different syntactic contexts:
lambda expressions (\ p1 p2 -> e), let expressions (let p = e1 in e2), matches
(case e1 of p -> e2), and clauses in multi-line function definitions (f p1 p2 =

e). Patterns may also appear as sub-patterns within other patterns—these are
the so-called nested patterns.

With one important exception, Haskell patterns behave very much like pat-
terns found in other functional languages such as ML[9], Clean[17], and Mi-
randa[11]. Haskell contains a pattern operator (represented with a tilde ~) which
can be used to alter the default order of evaluation in a pattern match. Patterns
of the form ~p are known in the Haskell literature[13] as irrefutable patterns, al-
though we shall see that this term is something of a misnomer because matches
against irrefutable patterns can indeed fail. Haskell patterns without ~ are eval-
uated strictly (as in ML and Miranda, etc.). That is, matching a ~-free pattern p

2 The name comes from Peyton-Jones[11] where this same function was represented
by a fat bar []—hence the name “fatbar.”

data Tree = T Tree Tree | S Tree | R Tree | L

ex0 = (\ (T (S x) (R y)) -> L) (T L (R L)) ---> match failure

ex1 = (\ ~(T (S x) (R y)) -> L) (T L (R L)) ---> L

ex2 = (\ ~(T (S x) (R y)) -> x) (T L (R L)) ---> match failure

ex3 = (\ ~(T ~(S x) (R y)) -> y) (T L (R L)) ---> L

ex4 = (\ ~(T (S x) ~(R y)) -> y) (T L (R L)) ---> match failure

Fig. 4. Shifting matching from binding to evaluation with˜

against a value v performs the entire pattern match at the binding-time of vari-
ables within p. By contrast in a pattern-match of ~p against v, any matching
of p is delayed until a variable within p is evaluated. In that sense, the pattern
~p is lazier than p. The ~ operator in Haskell splits the evaluation of a pattern
match between the binding and evaluation times of pattern variables.

Several examples will help clarify how the pattern operator ~ splits up the
evaluation of a pattern match. The Haskell function applications (ex0-ex4) from
Figure 4 demonstrate some of the evaluation subtleties arising from the use of
irrefutable patterns. They all involve variations on the pattern (T (S x) (R y))

applied to a value (T L (R L)) (call it v). Distinguish each pattern in ex0-ex4
as p affixed with the expression number (e.g., p1 is “~(T (S x) (R y))”). Note
also that the lambda expressions of ex0 and ex1 have the constant body L, while
those of ex2-ex4 have the variable bodies x and y. Patterns p1-p4 include ~, and
this, in combination with the different bodies results in the (different) evaluation
behavior as is noted on the right-hand side of the figure.

Because it contains no ~, the pattern match of p0 against v in ex0 is performed
entirely at the binding time of variables x and y, which results in a pattern
match failure, although neither x nor y are evaluated in the body of ex0. ex1 is
identical to ex0 except that p1 has a ~ affixed. Evaluating ex1 succeeds because
the irrefutable pattern p1 has shifted the entire pattern match to the evaluation
times of its variables x and y, and because neither variable is evaluated in the
body of ex1, the failure-producing pattern match is never performed. However,
if we were to evaluate one of these variables (as in ex2), a match failure would be
produced as before with ex0. In ex3, the evaluation of y in the body forces the
match of part of p3 under the outermost ~ (i.e., in “~(T ...)”), but the second ~
(in “~(S x)”) allows the whole match to succeed. The variable y is evaluated in
the body of ex4 and causes a match failure, despite the fact that the subpattern
~(R y) matches the (R L) in argument v. Interestingly in this case, evaluating y

forces the match of (S x) against L as in previous failure cases.

4.1 How do we model patterns?

A pattern p may be modeled as a function taking a value (the object being
matched against) which produces either bindings for the variables in p or an
error signifying match failure. We will refer to the variables of a pattern as its
fringe. Specifying potentially error-producing functions is usually accomplished
with an error monad[8]; in Haskell, we use the built-in Maybe monad for this

purpose. We view a pattern p as a function which takes a value and returns a
tuple of values containing bindings for the fringe of p. Because we model arbitrary
tuples as lists, the type of the semantic function mP is P -> V -> Maybe [V]. If
(mP p v) is (Just vs), then the list of values vs are the bindings for the fringe
of p. Pattern match failure occurs if (mP p v) returns Nothing.

We define a special function fringe for calculating the fringe of a pattern,
such that (fringe p) returns the fringe of p in order of occurrence from left to
right:

fringe :: P -> [Name] fringe (Pcondata n ps) =

fringe (Pconst i) = [] foldr (++) [] (map fringe ps)

fringe (Pvar x) = [x] fringe (Ptuple ps) =

fringe Pwildcard = [] foldr (++) [] (map fringe ps)

fringe (Ptilde p) = fringe p

Matching a variable never forces any further matching and always succeeds,
so the variable x should be bound to the value v. This is signified by returning
(Just [v]). To match a pattern constant, the argument i must be compared
against the constant k in the pattern. If not equal, return Nothing, signifying
pattern match failure. Otherwise, return (Just []). Observe that because no
additional bindings were found, that the empty list is returned. The simplest
pattern is the wildcard pattern, which always succeeds, returning (Just []).

mP :: P -> V -> Maybe [V]

mP (Pvar x) v = Just [v]

mP (Pconst k) (Z i) = if i==k then Just [] else Nothing

mP Pwildcard v = Just []

mP (Ptuple ps) (Tagged "tuple" vs) = stuple (map mP ps) vs

mP (Pcondata n ps) (Tagged t vs) = if n==t then

stuple (map mP ps) vs

else Nothing

mP (Pnewdata n p) v = mP p v

mP (Ptilde p) v = Just(purifyN (arity p) (mP p v))

where purifyN n x = project 0 (map purify (replicate n x))

project i (x:xs) = (x !! i) : (project (i+1) xs)

project i [] = []

arity = length . fringe

stuple :: [V -> Maybe [V]] -> [V] -> Maybe [V]

stuple [] [] = Just []

stuple (q:qs) (v:vs) = do v’ <- q v ;

vs’ <- stuple qs vs ;

Just (v’++vs’)

replicate 0 x = []

replicate n x = x : (replicate (n-1) x)

Fig. 5. Semantics of patterns

Tuples and structured data have much in common so we discuss both these
cases together. They both use the auxiliary function stuple which performs suf-
ficient evaluation to match against the pattern, and no more. Matching a Haskell
pattern (p1,...,pn) against a tuple value (v1,...,vn) succeeds only when each
match of pi against vi succeeds. In that sense, matching tuple patterns in Haskell
is somewhat strict. The function stuple (for strict tuple) takes a list qs of pat-
tern meanings (i.e., functions of type (V -> Maybe [V])) and a corresponding list
of values vs, applies each pattern meaning qi to the corresponding vi. If all of
these matches succeed, then the bindings collected from each match are returned.
However, if one of the matches fails, then Nothing is returned.

Structured data is similar. When pattern (Pcondata n ps) is matched against
(Tagged t vs), first the tags n and t are compared. If the tags are equal, then
ps are matched against vs as in the Ptuple case. Otherwise, Nothing is returned.

The constructor function introduced by a newtype declaration acts like the
identity function. Thus to match a Pnewdata pattern against an argument, just
match its sub-pattern against the argument. A similar rule is found in the eval-
uation of newtype constructor functions in the function mE.

The most semantically interesting pattern is the irrefutable pattern ~p, whose
semantics is shown in Figure 5. Laziness of the match of (Ptilde p) against v

is achieved by wrapping any actual matching by the Just constructor.

purifyN n (mP p v) =
{

[v1, ..., vn], if (mP p v) = Just[v1, ..., vn]
[bottom, . . . , bottom], if (mP p v) = Nothing

where n is (arity p). Notice that this is almost identical to (purify (mP p v)),
except that the Nothing branch returns a list of bottom values—one for every
variable in (fringe p). Generally, the effect of deferring pattern match failure is
characterized by the following equivalence:

(mP p̃ v) = Just[bottom,. . .,bottom]⇐⇒ (mP p v) = Nothing

Given this view of patterns, it is now possible to describe formally how the
two varieties of pattern match failure—binding and evaluation time failure—
are manifested in the semantics. The binding time failure for a match (mP p

v) of pattern p against value v is manifested by a Nothing computation. If
Haskell did not include irrefutable patterns, that would be the whole story.
If the match (mP p v) is Nothing, then the match (mP ~p v) will return (Just

[bottom,...,bottom]), and each variable in the fringe of ~p will be bound to
bottom. This is precisely how the pattern match is deferred until evaluation
time. Instead of failing at binding time, each variable in (fringe p) is bound
to bottom, and so the match failure will be reported at the evaluation times of
(fringe p) (if at all).

5 The Meaning of Expressions

In our semantics, the meaning of a Haskell program is an environment to value
function. This section contains a detailed explanation of the semantic function

for expressions mE. Each of the following subsections describes a few related
clauses making up the definition of mE along with the auxiliary functions neces-
sary for those clauses. These auxiliary functions supply meaning for the other
syntactic categories of Haskell. The semantics of Haskell’s mutually recursive let

expressions is deferred until the discussion of declarations in Section 6.1.

mE :: E -> Env -> V ifV :: V -> a -> a -> a

mE (Var n) rho = rho n ifV (Tagged "True" []) x y = x

mE (Const i) rho = (Z i) ifV (Tagged "False" []) x y = y

mE (TupleExp es) rho =

tuple $ map (\e-> mE e rho) es tuple :: [V] -> V

mE (Cond e0 e1 e2) rho = tuple [v] = v

ifV (mE e0 rho) (mE e1 rho) (mE e2 rho) tuple vs = Tagged "tuple" vs

mE Undefined rho = bottom

Fig. 6. Semantics of simple expressions

For pedagogical reasons, the text of the paper breaks the definitions into a
few clauses at a time. An actual implementation would need to collect them all
together in a single place. Because this paper is intended for a general audience,
constructs which are unique to Haskell are described operationally first when
appropriate.

5.1 Simple Expressions

The meaning of a variable is obtained by extracting its binding from the current
environment (rho) by applying it to the variables name. Constants are simply
turned into values. In the case for tuples, the laziness of Haskell first becomes
apparent. The evaluation of each of the subexpressions (the es) must be sus-
pended, and this is accomplished with the lazy list constructor []. Conditional
expressions, are easily translated using the control operator ifV. The meaning
of the Undefined expression is simply bottom.

5.2 Application and Abstraction

Function application and abstraction are the essence of any functional language.
Because nested patterns are λ-bound in Haskell (as in most functional lan-
guages), care must be taken to implement Haskell’s laziness correctly.

To compute the meaning of an application App, use app to apply the meaning
of e1 to the meaning of e2. The meaning of Haskell abstraction is defined in
terms of an auxiliary operation called lam, which we describe in detail below.
The meaning of an abstraction with a single pattern (Abs [p] e) in environment
rho is simply (lam p e rho), injected into V by FV. Haskell abstractions may have
more than one pattern bound in a lambda; in the abstract syntax, this is: (Abs

mE :: E -> Env -> V

mE (App e1 e2) rho = app (mE e1 rho) (mE e2 rho)

mE (Abs [p] e) rho = FV $ lam p e rho

mE (Abs ps e) rho = sharp (length ps) [] (lam (ptuple ps) e rho)

lam :: P -> E -> Env -> V -> V

lam p e rho =

(mP p <> ((\vs -> mE e (extend rho xs vs)) >>> Just)) >>> purify

where xs = fringe p

ptuple :: [P] -> P

ptuple [p] = p

ptuple ps = Pcondata "tuple" ps

Fig. 7. Semantics of application and abstraction

[p1,. . .,pn] e). We note that this construct is not reducible to the previous case
as: (Abs [p1] (. . . Abs [pn] e)). It is, in fact, lazier than this translation (cf.
[13], section 3.3), because (Abs [p1,. . .,pn] e) waits for all n arguments before
matching any of the patterns, while (Abs [p1] (. . . Abs [pn] e)) matches the
arguments as each is applied. Laziness for (Abs [p1,. . .,pn] e) is achieved by
currying (with sharp) n times.

What of lam? Evaluating the Haskell expression (\p-> e) applied to value v

in environment rho follows this sequence of steps. First, match p against v. Sec-
ondly, if this is (Just vs), then evaluate e in the extended environment (extend

rho xs vs) where xs is the fringe of p; if the match produces Nothing, then the
whole application should fail. As observed in Section 3.2, this kind of sequencing
suggests using Kleisli composition (<>). These two steps can be neatly charac-
terized as:

(mP p <> ((\vs -> mE e (extend rho xs vs)) >>> Just)) :: V -> Maybe V

where xs is the fringe of p. Because function values are functions from V to V, we
define (lam p e rho) as the above expression composed on the right by purify:

(mP p <> ((\vs -> mE e (extend rho xs vs)) >>> Just)) >>> purify :: V->V

This is an example of how purification delimits the computational aspects
of Haskell. Although an abstraction (\p -> e) has effects arising from pattern
matching, these impurities are eliminated by post-composing with purify.

5.3 The Meaning of Guarded Expressions

A body is a form of guarded Haskell expression occurring only within the scope
of a case expression, function declaration, or pattern binding. For example in
the following case expression:

case e of { p | g1 -> e1 ; ... | gn -> en where { decls } ; <rest> }

the “| g1 -> e1 ;...; | gn -> en” is a body, where the guards g1, ..., gn are
boolean-valued expressions. This body would be represented in the abstract
syntax as (Guarded [(g1,e1),...,(gn,en)]). A body may also be unguarded
(i.e., represented as (Normal e) where e is just an expression in E).

Operationally, bodies with guards behave like nested if-then-else expressions.
The body “| g1 -> e1 ;...; | gn -> en” within the aforementioned case ex-
pression would evaluate as follows:

1. If the pattern match of p against the value of e fails, then continue with
<rest>.

2. Otherwise if the pattern match succeeds, evaluate g1, ..., gn in ascending
order until either a true guard gi is found, or the list is exhausted. If gi is
the first true guard, then continue evaluating ei. If all the guards are false,
then continue with <rest>.

Guarded bodies restrict when branches of a case expressions are taken. In
particular, two identities hold:

(1) case v of { p | True -> e ; ... } = case v of { p -> e ; ... }

(2) case v of { p | False -> e ; ... } = case v of { ... }

The first identity shows that having a constant True guard is identical to having
no guard at all, while in case (2), having a constant False guard on the first
branch is equivalent to always ignoring the branch altogether.

mB :: B -> Env -> Maybe V

mB (Normal e) rho = Just (mE e rho)

mB (Guarded gl) rho = ite gl rho

where ite [] rho = Nothing

ite ((g,e):gs) rho = ifV (mE g rho) (Just (mE e rho)) (ite gs rho)

Fig. 8. Semantics of guarded expressions B (bodies)

Because bodies occur within the branches of case statements, they are Maybe-
valued. Figure 8 displays the semantics of bodies, mB :: B -> Env -> Maybe V.
The meaning of an unguarded body (Normal e) is just the meaning of the ex-
pression e injected into the Maybe monad. The meaning of a body (Guarded

[(g1,e1),...,(gn,en)]) is:

ifV (mE g1 rho) (Just (mE e1 rho))

...

(ifV (mE gn rho) (Just (mE en rho)) Nothing)

which behaves as a sequence of nested if-then-else where the last “else” clause is
a Nothing. In this context, the Nothing signifies that the falsity of the guards has
forced an otherwise successful branch in a case to fail, and that the next branch
in the case should be attempted.

mE :: E -> Env -> V

mE (Case e ml) rho = mcase rho ml (mE e rho)

mcase :: Env -> [Match] -> V -> V

mcase rho ml = (fatbarL $ map (match rho) ml) >>> purify

where fatbarL :: [V -> Maybe V] -> V -> Maybe V

fatbarL ms = foldr fatbar (\ _ -> Nothing) ms

-- The function match is used to construct the meaning of a Match

match :: Env -> (P, B, [D]) -> V -> Maybe V

match rho (p,b,ds) = mP p <> (\vs -> mwhere (extend rho xs vs) b ds)

where xs = fringe p

-- (mwhere rho b ds) is the meaning of body b in where-clause "b where ds"

mwhere :: Env -> B -> [D] -> Maybe V

Fig. 9. Case expressions. Note that mwhere is defined in Figure 12.

5.4 Case Expressions

We next consider the semantics of case expressions. All of the definitions dis-
cussed in this section are summarized in Figure 9. The meaning of a case ex-
pression is defined in terms of two main auxiliary functions, match and mcase.
The function match gives the meaning of a Match, which is really just a branch in
a case expression. The function mcase uses the fatbar semantic control operator
to construct the meaning of a case statement.

A match is a tuple, ((p,b,ds) :: Match), whose semantic specification is sim-
ilar to that of lam (discussed in Section 5.2), although because it occurs within a
case expression, it is Maybe-valued. An additional consideration is that the dec-
larations in ds are visible within the body b. Such declarations would appear in
Haskell concrete syntax as a “where” clause (i.e., “b where ds”). We have a third
auxiliary function, mwhere, which models the mutually recursive where clauses of
Haskell, but we defer discussion of it until Section 6.1 where such declarations
are handled. It suffices to say that (mwhere rho b ds :: Maybe V) is the meaning
of body b within the scope of rho extended to contain the bindings from ds. And,
if ds is empty, then (mwhere rho b ds) is simply (mB b rho).

Function (match rho p b ds) is defined as:

mP p <> (\vs -> mwhere (extend rho xs vs) b ds)

where xs is the fringe of p. We see the same pattern as in lam, where the bindings
for the fringe of p are extracted by the Kleisli composition: (mP p <> (\vs -> ...)).
The extended environment is then passed on to a call to (mwhere (extend rho

xs vs) b ds).
The function mcase takes the current environment, rho, and a list of Matchs,

[m1,...,mn], and returns a function from V to V. Unfolding the definitions of

fatbarL in the definition of mcase, the value of (mcase rho [m1,...,mn]) can be
seen to have the form:

((match rho m1) ‘fatbar‘

...

(match rho mn) ‘fatbar‘ (\ _ -> Nothing))) >>> purify

Here we use infix notation ‘fatbar‘.
Recall from Section 3.2 that, when the above term is applied to a value x,

the control operator fatbar will sequence through the ((match rho mi) x) from
left to right, until coming to the leftmost computation of the form (Just v) (if it
exists). The value of the above expression would be in that case (purify (Just

v)) or simply v. If all the ((match rho mi) x) are Nothing, then the value of the
above term is (purify Nothing) or simply bottom. This last eventuality occurs
when all of the branches of a case expression have been exhausted.

Given the function mcase, it is a simple matter to define case expressions as in
Figure 9. This is another example of how purification delimits the computational
aspects of Haskell. Failure in the computational world (i.e., a Nothing) resulting
from the interaction of patterns, cases, and guards is transmuted into value-level
failure (i.e., bottom) by post-composing with purify.

5.5 Constructor Application

Constructor applications are evaluated in a manner much like tuples. The key
difference is the possibility that constructors can have some of their arguments
annotated as strict arguments. For example in Haskell, we might write (data T =

C String !Int), where the ! signifies that the evaluation of second argument to
C should be strict. We represent this in our abstract syntax by annotating each
sub-argument to a constructor application ConApp with a strictness annotation
of type LS.

To force evaluation of a strict constructor argument, we make use of the
semseq semantic operator defined in Figure 3. If expression e is an argument
to a strictly-annotated constructor, then the correct value for e in the resulting
Tagged value should be (semseq (mE e rho) (mE e rho)) for current environment
rho. This may seem odd at first, but this expression is not identical to (mE

e rho), because they have different termination behavior. That is, semseq will
force evaluation of (mE e rho), and this may fail, causing the entire (semseq (mE

e rho) (mE e rho)) to fail.
Sequencing through the arguments of constructor application (ConApp n el)

is performed with the auxiliary function evalL. evalL tests each strictly-annotated
argument in el with semseq as outlined above, and then constructs and returns
the corresponding Tagged value.

Below is a sample Hugs session showing the application of mE to two con-
structor applications, which we represent for readability in Haskell’s concrete
syntax. Both are applications of constructors L and S to the Undefined ex-
pression, but it is assumed that the S constructor has been declared with a
strictness annotation (i.e., with “!”). Evaluating (mE (L Undefined) rho0) (for

mE :: E -> Env -> V

-- Strict and Lazy Constructor Applications

mE (ConApp n el) rho = evalL el rho n []

where

evalL :: [(E,LS)] -> Env -> Name -> [V] -> V

evalL [] rho n vs = Tagged n vs

evalL ((e,Strict):es) rho n vs =

semseq (mE e rho) (evalL es rho n (vs ++ [mE e rho]))

evalL ((e,Lazy):es) rho n vs = evalL es rho n (vs ++ [mE e rho])

-- New type constructor applications

mE (NewApp n e) rho = mE e rho

-- Miscellaneous Functions

mE (Seq e1 e2) rho = semseq (mE e1 rho) (mE e2 rho)

mE (Bin op e1 e2) rho = binOp op (mE e1 rho) (mE e2 rho)

where binOp Plus (Z i) (Z j) = Z $ i+j

binOp Mult (Z i) (Z j) = Z $ i*j

binOp IntEq (Z i) (Z j) = Tagged (equal i j) []

binOp IntLess (Z i) (Z j) = Tagged (less i j) []

equal i j = if i==j then "True" else "False"

less i j = if i<j then "True" else "False"

Fig. 10. Semantics of constructor applications, seq, and arithmetic operations

some environment rho0) just results in the Tagged value (L ?) being returned (in
pretty-printed form) as one would expect of a lazy constructor. Evaluating (mE

Undefined rho0) produces a failure, because semseq forces the evaluation of the
argument Undefined.

Semantics> mE (L Undefined) rho0

(L ?)

Semantics> mE (S Undefined) rho0

Program error: {undefined}

5.6 Newtype Constructor Application

A newtype constructor acts like the identity function, thus it is easy to define the
clause of mE for newtype constructors.

5.7 Miscellaneous expressions

Finally, we come to the last few miscellaneous expression forms for the Seq

operation and the primitive binary operators. We assume that the primitive
operators are strict in their operands.

mD :: D -> Env -> V

mD (Fun f cs) rho = sharp k [] body

where

body = mcase rho (map (\(ps,b,ds) -> (ptuple ps, b,ds)) cs)

k = length ((\(pl,_,_)->pl) (head cs))

mD (Val p b ds) rho = purify (mwhere rho b ds)

Fig. 11. Semantics of declarations D

6 The Meaning of Declarations

In this section, we consider how declarations are processed within Haskell. There
are two declaration forms, function and pattern, represented in the abstract syn-
tax as (Fun f cs) and (Val p b ds), respectively. Here, cs is a list of Clauses;
that is, (cs :: [([P],B,[D])]). The semantics for declarations D, discussed be-
low, is presented in Figure 11.

The Fun declaration corresponds to a multi-line function declaration, such as:

nth :: Int -> [a] -> a

nth 0 (x:xs) = x

nth i (x:xs) = nth (i-1) xs

Observe that each clause necessarily has the same number of pattern arguments
from the assumed well-typedness of terms.

The Haskell98 report[cf. Section 4.4.3, page 54] defines multi-line function
declarations through translation into a case expression

The general binding form for functions is semantically equivalent to the
equation (i.e. simple pattern binding):

x = \x1 . . . xk-> case (x1, . . . , xk) of (p11, . . . , p1k) match1

...
(pm1, . . . , pmk) matchm

where the “xi” are new identifiers.

Let us now consider how to model (Fun f cs) in environment rho. We reuse
mcase here to model the case expression behavior, and following the Haskell98
report quoted above, we make each Clause in the cs into a branch of the case:

mcase rho (map (\(ps,b,ds) -> (ptuple ps, b,ds)) cs) :: V -> V

This term is a function from V to V, but we can say a little more about
the V argument. In general, it will expect a tuple value (Tagged "tuple" vs) as
input because each branch of the case is made into a tuple pattern by ptuple

(defined in Figure 7). But f is a function in curried form, whose arity, k, is the
number of arguments to f. So we must apply currying k times using the sharp

semantic operator. The full definition of (mD (Fun f cs)) appears in Figure 11.
Interestingly, using the currying operator sharp dispenses with the condition
“where the “xi” are new identifiers” from the quote above by using variables
which are fresh in the metalanguage.

The Haskell98 report[cf. Section 4.4.3, page 54] defines pattern declarations
through translation into a let expression. It begins by giving the general form
of pattern bindings:

[I]n other words, a pattern binding is:

p | g1 = e1

| g2 = e2

. . .
| gm = em

where {decls}

Translation: The pattern binding above is semantically equivalent to
this simple pattern binding:

p = let decls in
if g1 then e1 else
if g2 then e2 else
. . .
if gm then em else error “Unmatched pattern′′

This translation means that a pattern binding may be reduced to a related
let expression. In Section 5.4, we made use of the function (mwhere :: Env

-> B -> [D] -> Maybe V) which models Haskell’s where clauses, and we make
use of that function again here to specify the let-binding (let decls in...)

above as: mD (Val p b ds) rho = purify (mwhere rho b ds). Observe that the
“(mwhere rho b ds :: Maybe V)” is a computation and must be brought into the
value world using purify.

6.1 Mutual Recursion and Let-binding

Our technique for modeling mutually recursive declarations in Haskell adapts a
standard technique from denotational semantics for specifying mutual recursion
and recursive let expressions. However, this technique applies only to the lazy
λ-calculus in which only variable and tuple patterns are λ-bound, and so care
must be taken when generalizing it to Haskell (where nested patterns are also
λ-bound). In this section, we overview the standard technique, compare it with
the definition in the Haskell98 report, and describe our specification of mutual
recursion in Haskell.

To overview how mutual recursion is typically specified denotationally, we
consider adding various let-binding constructs to the lazy λ-calculus. Let us
say that we have a semantics for the non-recursive lazy λ-calculus, [[−]] : Lazy →
env → Value, where env and Value are defined similarly to Env and V, respectively.

Non-recursive let expressions are frequently introduced as syntactic sugar for an
application:

[[let x = e in e′]] =def [[(λx.e′)e]] (1)

The non-recursive let-binding of variable x to e in e′ is accomplished merely
by function application (which is already handled by [[−]]). Handling recursive
let-binding follows a similar pattern, although in this case, an explicit use of the
least fix point operator fix becomes necessary:

[[letrec x = e in e′]]ρ =def [[(λx.e′)]]ρ (fix([[λx.e]]ρ)) (2)

Because e may contain references to the recursively defined x, one must apply
fix to resolve the recursion.

This last definition handles only one recursive binding (x = e). There is a
standard technique in denotational semantics for extending Equation 2 to sets
of mutually recursive bindings using tuples. In the case of mutually recursive
bindings, we are given a set of mutually recursive bindings, {x1 = e1, . . . , xn =
en}, that we refactor into a single tuple pattern (x1, . . . , xn) and tuple expression
(e1, . . . , en). Now, this pattern and expression play the same rôle as x and e did
in Equation 2:

[[letrec {x1 = e1 . . . xn = en} in e′]] =def (3)
[[(λ〈x1, . . . , xn〉.e′)]]ρ (fix([[λ〈x1, . . . , xn〉.〈e1, . . . , en〉]]ρ))

Now returning to mutually recursive bindings in Haskell, something very
similar to the standard technique occurs. The only complications arise in that, in
Haskell, nested patterns are λ-bound and not just variables or tuples. Comparing
Equation 3 to the relevant equations from the Haskell98 report[cf. Section 3.12,
page 22], we can see that something very similar is going on:

(a) let { p1 = e1 ; . . . ; pn = en } in e0 =
let (̃ p1, . . . , p̃n) = (e1, . . . , en) in e0

(b) let p = e1 in e0 = case e1 of { p̃−>e0 }
where no variable in p appears free in e0.

(c) let p = e1 in e0 = let p = fix (\̃ p−>e1) in e0

Definition (b) shows how to convert a simple let into a case expression in a
manner similar to that of Equation 1. Definitions (a) refactors mutually recursive
bindings into a single tuple pattern and tuple expression, and (c) resolves the
recursion with an explicit fix point. It is worth pointing out that the use of fix
in (c) is really hypothetical and is meant to direct the reader to the implicit
intentions of Haskell’s designers; Haskell does not contain a fix operator and
one must define it as we have in Figure 3.

One semantic subtlety in (a)-(c) arises from the fact that pattern matching
perturbs Haskell’s default lazy evaluation. A Haskell abstraction (\p -> e) may

mE :: E -> Env -> V

mE (Let ds e) rho = letbind rho ds e

letbind :: Env -> [D] -> E -> V

letbind rho [] e = mE e rho

letbind rho ds e = (lam dp e rho) v

where

dp = tildefy (declared ds)

xs = frD ds

decls env = tuple (map (\d -> mD d env) ds)

v = fix (((mP dp) <>

((\vs -> decls (extend rho xs vs)) >>> Just)) >>> purify)

mwhere :: Env -> B -> [D] -> Maybe V

mwhere rho b [] = mB b rho

mwhere rho b ds = (wherecls dp b rho) v

where

dp = tildefy (declared ds)

xs = frD ds

decls env = tuple (map (\d -> mD d env) ds)

v = fix (((mP dp) <>

((\vs -> decls (extend rho xs vs)) >>> Just)) >>> purify)

wherecls p b rho = (mP p <> (\vs -> mB b (extend rho xs vs)))

where xs = fringe p

-- the fringe of a declaration D

frD :: [D] -> [Name]

frD [] = []

frD ((Fun f _):ds) = f : (frD ds)

frD ((Val p _ _):ds) = fringe p ++ (frD ds)

Fig. 12. Semantics of mutually recursive bindings

be partially strict in that an argument to the abstraction will be evaluated
against p to get the bindings for (fringe p). Because arguments to fix must be
lazy, care must be taken to annotate certain patterns with the irrefutable pattern
operator ~, and this is why ~ pops up somewhat mysteriously in definitions (a)-
(c). Our specification of mutual recursion will make similar ~ annotations where
necessary. We condense (a)-(c) into the following schemas, which guides our
specification of mutually recursive let-binding in Haskell:

let { p1 = e1 ; . . . ; pn = en } in e = (4)
(\ (̃̃ p1, . . . , p̃n) -> e) (fix (\ (̃̃ p1, . . . , p̃n) -> (e1, . . . , en)))

To be concrete, let us consider what must be done to specify (Let ds e) in
the manner discussed above. First, we must gather all of the patterns in the
left-hand sides of the declarations in ds (call them p1, . . ., pn) and form the
necessary tuple pattern: ~(~p1,...,~pn). This is accomplished chiefly with two
auxiliary functions, tildefy and declared (both shown below). tildefy adds a ~
to a pattern if necessary. Note that a variable pattern (Pvar x) needs no ~ and
a no redundant ~s need be added, either. (declared ds) returns a tuple pattern
in which all component patterns have been tildefy’d.

declared :: [D] -> P

declared ds = ptuple $ map getbinder ds

where getbinder (Fun f _) = Pvar f

getbinder (Val p _ _) = tildefy p

tildefy :: P -> P

tildefy p = case p of (Ptilde p’) -> p

(Pvar x) -> p

_ -> (Ptilde p)

The next step in specifying (Let ds e) is to form a tuple value out of the
right-hand sides of its declarations ds. This corresponds to the (e1, . . . , en) tuple in
(a) above. This is accomplished mainly by mapping the semantics of declarations,
mD, onto the declaration list ds, and then converting the list into a tuple value.
Recall tuple is defined in Figure 6.

Now we can put all of these pieces together into the auxiliary function
letbind. (letbind rho ds e) takes the current environment rho, extends it with
the mutually recursive bindings from ds, and evaluates e in this extended envi-
ronment. In other words, (letbind rho ds e) is precisely (mE (Let ds e) rho).
(letbind rho ds e) implements the scheme given in Equation 4 above, and we
define the meaning of Haskell let with it in Figure 12.

Defined in an analogous manner to letbind is the auxiliary function mwhere.
This has been used to describe where clauses around bodies in B. letbind and
mwhere handle mutual recursive bindings identically, and the principal difference
between them is that mwhere applies to bodies B, and hence has a computational
type.

e1 = seq ((\ (Just x) y -> x) Nothing) 3

e2 = seq ((\ (Just x) -> (\ y -> x)) Nothing) 3

e3 = (\ ~(x, Just y) -> x) (0, Nothing)

e4 = case 1 of

x | x==z -> (case 1 of w | False -> 33)

where z = 1

y -> 101

e5 = case 1 of

x | x==z -> (case 1 of w | True -> 33)

where z = 2

y -> 101

e6 = let fac 0 = 1

fac n = n * (fac (n-1))

in fac 3

Semantics> mE e1 rho0 Hugs> e1
3 3

Semantics> mE e2 rho0 Hugs> e2
Program error: {undefined} Program error: {e2_v2550 Maybe_Nothing}

Semantics> mE e3 rho0 Hugs> e3
Program error: {undefined} Program error: {e3_v2558 (Num_fromInt instNum_v35 0,...)}

Semantics> mE e4 rho0 Hugs> e4
Program error: {undefined} Program error: {e4_v2562 (Num_fromInt instNum_v35 1)}

Semantics> mE e5 rho0 Hugs> e5
101 101

Semantics> mE e6 rho0 Hugs> e6
6 6

Semantics> Hugs>

Fig. 13. Comparing the semantics to Hugs

7 Testing the Interpreter

Figure 13 presents a number of examples, and compares the output of the se-
mantics (executing in Hugs) against that of the Hugs Haskell interpreter. In
the figure, rho0 is the empty environment, and, for the sake of readability, we
have not shown the abstract syntax translations of e1 through e6. Two interest-
ing cases are e1 and e2. As we observed in Section 5.2, the lambda expression
(\p1 p2 -> e) is lazier than the explicitly curried expression (\p1 -> \p2 -> e),
and the semantics mE agrees with the Hugs interpreter on this point.

The semantics mE explains this somewhat surprising distinction nicely. Con-
sider the following Haskell terms:

t1 = (\ (Just x) y -> x) Nothing

t2 = ((\ (Just x) -> (\ y -> x)) Nothing

(mE t1 rho0) is the function value FV(λ .bottom)—that is, a function that, if
applied, will fail. According to mE, the meaning of the application t2 is bottom,
because the pattern matching of (Just x) against Nothing is performed. mE also
distinguishes between ⊥a→b and (λ . ⊥: a → b) as required by the Haskell98
report[13] (cf. Section 6.2, page 75): (semseq (mE t1 rho0) 3) is simply 3, while
(semseq (mE t2 rho0) 3) is bottom.

8 Future Work and Conclusions

The Haskell98 report contains a number of translation schemas which describe
the interactions between Haskell features, and by doing so, provide a semi-formal
language definition to be used by programmers and language implementors alike.
In Section 6.1, we included several such schemas to motivate our formal view
of mutual recursion. These schemas may also be viewed as a set of axioms for
Haskell which must be satisfied by any candidate semantics (including this one)
for it to be considered a bona fide Haskell semantics in some sense. An example
validation occurs below in Figure 14. We have validated a number of the transla-
tion schemas from in the Haskell98 report having to do with pattern-matching,
but a number of schemas remain unchecked. A follow-on to this work would
collect all of these Haskell “axioms” together with the proofs of their validation
with respect to this semantics.

Haskell is commonly referred to as a lazy functional language, but it is more
properly understood as a non-eager language because it contains features (pat-
terns, the seq operator, etc.) which introduce strict perturbations of the default
lazy evaluation mechanism. These perturbations are important for practical rea-
sons: expert Haskell programmers may use strictness sparingly in their programs
to avoid some of the computational overhead associated with laziness without
giving it up entirely.

However, this mixed evaluation order complicates Haskell from a semantic
point of view. We have modeled Haskell’s control of demand by writing a calcu-
lational semantics in Haskell, relying on certain built-in aspects of Haskell (lazi-
ness, etc.) to model Haskell itself. An alternative would have modeled Haskell’s

mE (case v of { _ -> e ; _ -> e’ }) rho

= mcase rho { _ -> e ; _ -> e’ }) (mE v rho)

= (((match rho (_) e) ‘fatbar‘

(match rho (_) e’)) >>> purify) (mE v rho)

= ((((mP (_)) <> ((\ _ -> mE e rho) >>> Just) ‘fatbar‘

...)) >>> purify) (mE v rho)

where ... = (mP (_)) <> ((\ _ -> mE e’ rho) >>> Just)

= ((((_ -> Just []) <> ((\ _ -> mE e rho) >>> Just)

‘fatbar‘ ...)) >>> purify) (mE v rho)

= ((((\ _ -> mE e rho) >>> Just)

‘fatbar‘ ...)) >>> purify) (mE v rho)

= (((\ _ -> mE e rho) >>> Just) >>> purify) (mE v rho)

= purify (Just (mE e rho))

= mE e rho

Fig. 14. Validating the semantics w.r.t. translation “case v of { −>e; −>e′ } = e”

fine control of demand by monadic interpreter[2, 8], which can model the full
range, from fully strict to fully lazy languages.

The present work is the first formal treatment of the fine control of demand in
Haskell, but we believe that many of the techniques presented here apply equally
well to the semantics of functional languages in general. The patterns considered
were nested patterns, and we did not resort to pattern-match compilation to
simplify the task. The work clearly defines the interaction between data (with
and without strictness annotations) and newtype data constructors with Haskell’s
other features.

The code presented in this paper is available online at: www.cse.ogi.edu/~wlh.

Acknowledgements

The authors would like to thank John Launchbury, Dick Kieburtz, and Mark
Jones for their insights into Haskell and constructive criticism of earlier versions
of this work. Both the anonymous referees and the Pacsoft research group at
OGI offered many helpful suggestions that led to significant improvements in
the presentation.

References

1. Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpre-
tation of Computer Programs. McGraw Hill, Cambridge, Mass., second edition,
1996.

2. Olivier Danvy, Jürgen Koslowski, and Karoline Malmkjær. Compiling monads.
Technical Report CIS-92-3, Kansas State University, Manhattan, Kansas, Decem-
ber 1991.

3. Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of
Programming Languages. McGraw-Hill Book Co., New York, N.Y., second edition,
2001.

4. Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving
binders. In G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic
in Computer Science (LICS’99), pages 214–224, Trento, Italy, July 1999. IEEE
Computer Society Press.

5. Carl A. Gunter. Semantics of Programming Languages: Programming Techniques.
The MIT Press, Cambridge, Massachusetts, 1992.

6. Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Phillip Wadler. Type
classes in haskell. In Proceedings of the European Symposium on Programming,
volume 788 of Lecture Notes in Computer Science, pages 241–256. Springer Verlag,
April 1994.

7. Mark P. Jones. A system of constructor classes: overloading and implicit higher-
order polymorphism. In FPCA ’93: Conference on Functional Programming and
Computer Architecture, Copenhagen, Denmark, pages 52–61, New York, N.Y., June
1993. ACM Press.

8. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Conference record of POPL ’95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages., pages 333–343. ACM Press,
January 1995.

9. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, 1997.

10. Eugenio Moggi. Functor categories and two-level languages. In Proceedings of the
First International Conference on Foundations of Software Science and Computa-
tion Structure (FoSSaCS’98), volume 1378 of Lecture Notes in Computer Science,
pages 211–223. Springer Verlag, 1998.

11. Simon Peyton Jones. The Implementation of Functional Programming Languages.
Computer Science. Prentice-Hall, 1987.

12. Simon Peyton Jones. Implementing lazy functional languages on stock hardware:
the spineless tagless G-machine. Journal of Functional Programming, 2(2):127–202,
July 1992.

13. Simon Peyton Jones and John Hughes (editors). Report on the programming
language Haskell 98. February 1999.

14. Simon Peyton Jones and Simon Marlowe. Secrets of the glasgow haskell compiler
inliner. In Proceedings of the Workshop on Implementing Declarative Languages
(IDL’99), September 1999.

15. Simon Peyton Jones and André L. M. Santos. A transformation-based optimiser
for Haskell. Science of Computer Programming, 32(1–3):3–47, September 1998.

16. Andrew Pitts and Murdoch Gabbay. A metalanguage for programming with bound
names modulo renaming. In Mathematics of Program Construction, volume 1837
of Lecture Notes in Computer Science, pages 230–255. Springer Verlag, 2000.

17. Rinus Plasmeijer and Marko van Eekelen. Functional programming: Keep it clean:
A unique approach to functional programming. ACM SIGPLAN Notices, 34(6):23–
31, June 1999.

18. Programatica Home Page. www.cse.ogi.edu/PacSoft/projects/programatica.
James Hook, Principal Investigator.

19. Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Semantics. MIT Press, Cambridge, Massachusetts, 1977.

20. Phillip Wadler. The essence of functional programming. 19th POPL, pages 1–14,
January 1992.

A Pattern-matching compilation is not just desugaring

If a pattern p is (C t1 . . . tn) where ti are variables, and C is a constructor func-
tion, then p is a simple pattern. However, if one or more of the ti are not variable
patterns, then p is a nested pattern. Pattern-matching compilation[11, 15] is typ-
ically performed as part of the front-end (as it is in GHC and Hugs), because
it yields more efficient programs (see Chapter 5 by Wadler in [11] for further
details). Figure 15 shows an example of pattern-match compilation in which the
definition of a Haskell function nodups with nested patterns is transformed into
a similar definition without nested patterns. One feature of this transformation
was the necessity of generating new variables x, x’, xs, and xs’ along the way.

nodups1 l = -- Original with nested patterns:

case l of

[] -> []

[x] -> [x]

(y:(x:xs)) -> if x==y then (nodups1 (x:xs))

else (y:(nodups1 (x:xs)))

nodups2 xs’’ = -- After pattern-match compilation:

case xs’’ of

[] -> []

x’:xs’ -> case xs’ of

[] -> [x’]

x:xs -> if x’==x then (nodups2 (x:xs))

else (x’:(nodups2 (x:xs)))

Fig. 15. Pattern-match compilation is syntactic saccharin

Previous attempts[12, 15] to define a denotational semantics for the core of
Haskell concentrate on the fragment of the language without nested patterns
(the kind of programs produced by pattern-match compilation). This semantics
for “unnested” Haskell could be extended simply to the full language by defining
the meaning of a term with nested patterns to be the meaning of its compilation.
For example, the meaning of nodups1 would be identified with that of nodups2.
Observe that this extended semantics relies on the ability to generate fresh names
within the semantics. The implicit assumption in this approach that pattern-
match compilation is just a semantically irrelevant elimination of syntactic sugar.

One defect of this extended semantics is that it is no longer compositional.
A much more serious flaw, however, derives from the reliance on fresh name
generation within the pattern-matching compilation. Recent developments[10,
4] in the semantics of staged languages reveal that the structural consequences
of including name generation within a denotational semantics are considerable.
This would have serious consequences for developing a simple logic for Haskell
programs.

