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Abstract. Language-based approaches to security typically use static
type systems to control information flow, relying on type inference to
distinguish secure programs from insecure ones. This paper advocates
a novel approach to language-based security: by structuring software
with monads (a form of abstract data type for effects), we are able to
maintain separation of effects by construction. The thesis of this work is
that well-understood properties of monads and monad transformers aid
in the construction and verification of secure software. We introduce a
formulation of non-interference based on monads (rather than the typ-
ical trace-based formulation). Using this formulation, we prove a non-
interference style property for a simple instance of our abstract system
model. Because monads may be easily and safely represented within any
higher-order, typed functional language, monadic event systems may be
directly realized within such a language.

1 Introduction

This paper advocates a novel approach to language-based security: security by
construction. Starting from a mathematical model of shared-state concurrency,
we develop, through a sequence of refinements, the derivation of an exemplary
operating system kernel supporting both standard Unix-like system calls (e.g.,
fork, sleep, etc.) and a formally verified security policy (domain separation).

The research reported here presents a formal, language-based model of secu-
rity combining three approaches to system security and language semantics:

– Security “By Design.” Some approaches advocate implementation strate-
gies for secure system construction, with the idea that such disciplined strate-
gies are more likely to remain secure. One such strategy used in Java im-
plementations, sandboxing, limits the scope of stateful effects by executing
threads in disjoint regions of memory as illustrated in Figure 1. Good engi-
neering, however, does not constitute a guarantee of any security policy.

– Trace-based Formal Security Models. There are a number of formal se-
curity models [10, 40, 20, 41, 21] which characterize permissible interactions
between concurrent threads in terms of traces of abstract events. These mod-
els make precise the intuition that low-security operations should be “oblivi-
ous” to the execution of high-level operations. One drawback of such models
is that their precise relationship to actual systems remains unclear.



– Monadic Language Semantics. The approach advocated here combines
“by design” security with trace-based models into a common framework
based on monads. Monads provide a mathematically sophisticated theory of
effects which has proven useful in denotational semantics [23, 17, 25], func-
tional programming [35], and software verification [15]. Structuring our sys-
tem specifications with monads yields many benefits, not the least of which
are a number of useful properties obtained “by construction” which simplify
the verification of our security property.

Language-based Security via Monadic Constructions. We present a for-
mal model of security in which the model itself may be refined to an implementa-
tion of a system with secure shared-state concurrency. Essential to our approach
is the use of monads and monad transformers to structure our specifications. It is
our thesis that systems constructed monadically are more easily verified because
of the monadic encapsulation of effects. Monads and monad transformers allow
us to reason about our system definitions at the level of denotational seman-
tics. Because monads may be easily realized within any higher-order functional
programming language, system specifications are readily executable.

Many formal security models are formulated in terms of sequences of abstract
events. For the sake of convenience, we will refer to such models as event systems.
The intended interpretation of events is that they are imperative operations on
a shared state, but this is not made explicit—that is, the events themselves are
uninterpreted. Our approach makes this interpretation explicit by considering
languages of system behaviors and their denotational semantics. According to
our view of language-based security, an arbitrary, interleaved sequence of Lo and
Hi operations in a traditional traced-based model:

h0, l0, . . . , hn, ln

is viewed as the imperative program describing a particular (partial) system
behavior:

h0 ; l0 ; . . . ; hn ; ln

We then give such programs a (monadic) denotational semantics:

[[−]] : (EventLo + EventHi) → R()

where R is a monad encapsulating imperative effects and a notion of interleaving
concurrency called resumptions[26, 23, 25]. The monad R is constructed espe-
cially to isolate Hi, Lo, and kernel effects from one another. These denotational
semantics are developed in Section 5.

Partitioning Effects with Monads. Domain separation is supported by parti-
tioning the state into disjoint pieces, with each piece corresponding to a separate
domain. Stateful operations are then given a security level and can only manip-
ulate the storage partition corresponding to its security level. This partitioning
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Fig. 1. Shared-state concurrency with global state (left). In this system architecture, all
threads access the same global state, and so may interfere with one another in ways
difficult to control. Concurrency with separated domains (right). Secure computation
is promoted by partitioning Hi, Lo, and kernel threads into separate domains, each of
which has its own storage (or sandbox) which only it may affect. Domain separation
limits the scope of effects occuring in one domain from others. While this does not
guarantee secure computation, it does simplify the implementation, specification, and
verification of security properties.

is sometimes referred to as sandboxing. With monads, it is a simple matter to
partition storage into sandboxes, and this process is particularly straightforward
when the monads are constructed with monad transformers.

How this partitioning works is illustrated in Figure 2, where, for the sake of
simplicity1, we assume that there are two security levels Hi and Lo. Correspond-
ing to these levels are separated domains (c) that maintain distinct stores H
and L, respectively. Hi and Lo stateful operations are then encapsulated within
monads of the same name, created with the monad transformers (StateT H) and
(StateT L), respectively. Hi and Lo stateful operations h and l may be executed by
lifting them to the kernel level (b) with liftH and liftL, respectively, and these lift
mappings are created by the application of the state monad transformers. Sepa-
ration of effects is maintained by these lift mappings—precisely how is described
in detail in Section 4 below.

Separation By Construction. The approach advocated here achieves secure
shared-state concurrency by construction, where “by construction” is used in
two different, yet complementary, senses. The process is illustrated in Figure 3,
which illuminates the meanings of “by construction”:

– Stepwise-refinement of System. The vertical axis of Figure 3 measures
the richness of observable system events, and each step along that axis marks
an addition to those observables. At point 0, only a single, monolithic pro-
cess domain exists and all thread scheduling is static. At point 1, threads are

1 All of our results generalize easily to n separate domains.
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Fig. 2. Monadic Event Systems: Processes created in isolated security domains Lo and
Hi are lifted to the runtime platform K. Laws about monad transformers (StateT and
ResT above) aid in proving domain separation.

executable on separate domains. Point 2 allows statically-scheduled multi-
tasking, while point 3 allows the scheduling of threads to occur dynamically.
Dynamic scheduling is necessary for threads to affect their own execution
behavior (as with the Unix system call sleep and intradomain synchroni-
sation mechanisms such as semaphores) or to affect the system “wait list”
(as with the Unix system call fork). Point 4 adds such thread-level control
operations, and point 5 allows for secure, interdomain communication (such
as message-passing which obeying a “no-write-down” security policy).

– Properties of Monads & Monad Transformers. Many of the above
enhancements to system functionality are reflected in refinements to the un-
derlying monads and monad transformers of Figure 2. Monads and monad
transformers allow the effects of threads of differing security levels to be
controlled in a mathematically rigorous manner, and this scoping of effects
tames insecure interference between threads. The “by construction” prop-
erties of monads and monad transformers are extremely useful in formally
demonstrating domain separation.

Security Property. The security property we prove may be intuitively de-
scribed as the execution of low security events being oblivious to the execution
of high security events. For any initial sequence of interleaved Hi and Lo events

h0 ; l0 ; . . . ; hn ; ln

the effect of its execution on the Lo state should be identical to that of executing
the Lo events in isolation:

l0 ; . . . ; ln

Using the aforementioned denotational semantics, we make this notion precise
in Section 5.3.



Overview. This paper is structured as follows. Section 2 surveys related work
and Section 3 summarizes the background on monads, monad transformers, and
resumption-based concurrency necessary for understanding this work. Section 4
describes the useful properties that are obtained by construction with monad
transformers. Section 5 presents the main results of this research—the stepwise
development of an exemplary operating system kernel for secure computation.
First, a language of system behaviors is defined and given a resumption-monadic
semantics in Section 5.1. Second, a system for shared-state concurrency with
global store is transformed into a system with separated domains in Section 5.2.
Third, security in this setting—take separation—is specified and verified in Sec-
tion 5.3. Finally, Section 6 summarizes the present work and outlines future
directions.
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Fig. 3. Separation by construction: System functionality is enhanced by refining monad
transformers.

2 Related Work

Many formal security models—including non-interference and separability—are
formulated in terms of event systems [10, 40, 20, 41, 21]. While there are a variety
of similar formulations of event systems, they all include the following: an event
system S is comprised of a set of abstract events E and a set of traces T of (po-
tentially infinite) sequences of events in E. Furthermore, each event is assigned
a security level, which, for the sake of the present discussion, we will assume to
be Lo and Hi2.

Security policies may then be formulated in terms of events systems as rela-
tionships between event traces which specify permitted system executions. These
2 Event systems also distinguish subsets of E as input and output events.



typically are of the form: if τ1, . . . , τn ∈ T , then f(τ1, . . . , τn) ∈ T , where func-
tion f combines the traces τi in some manner specific to the security policy. For
example, separability [21, 41] can be defined formally as: for every pair of traces
τ1, τ2 ∈ T , then any trace τ such that (τ ↓Lo) = (τ1 ↓Lo) and (τ ↓Hi) = (τ2 ↓Hi) is
also in T . Here (τ ↓Lo) and (τ ↓Hi) filter out all but the Lo and Hi events from τ ,
respectively. (As formulated these techniques are easily generalized to any total
order of security levels known statically at compile time.)

Previous work has focused on languages with implicit imperative features,
such as Java or ML. This paper instead assumes a language in which all impera-
tive features are captured by a monad. As a result all impure effects (references,
exceptions, I/O) are distinguished from pure computations by their types, and
thus side-effects are allowed while preserving the semantics of the purely func-
tional subset of the language.

Moggi was the first to observe that the simple structure known as a monad
was appropriate for the development of modular semantic theories for program-
ming languages [22]. In his initial development, Moggi showed that most known
semantic effects could be naturally expressed monadically. He also showed how
a sequential theory of concurrency could be expressed in the Resumption monad
[23]. That model of concurrency is used extensively below. Wadler and colleagues
at Glasgow University observed that using monads internally in the pure, higher-
order, typed language Haskell gave a natural and safe embedding of effectful
computation in a pure language.

We are working to develop and formally verify a security kernel as part of
the Programatica project at OGI. To formally verify security properties of such
a system is a formidable task. One approach to reducing the enormity of this
task has been using type-systems for information-flow. There has been a growing
emphasis on such language-based techniques for information flow security [34, 33,
16, 32, 27] (see [29] for a survey of this work). The chief strength of this type-
based approach is that the well-typedness of terms can be checked statically
and automatically, yielding high assurance at low cost. Unfortunately, this type-
based approach is not as general as one might wish: 1) there will be programs
which are secure but which will be rejected by the type system due to lack of
precision and 2) there will be programs that have information flow leaks which
we want to allow (e.g., a declassification program) but which would be rejected
by the type system.

The Programatica team has investigated a more general—but potentially
more expensive—approach to building large systems guaranteed to satisfy secu-
rity properties. In our approach we derive proofs of security properties by hand,
and yet proving security properties of large systems is kept tractable. This is due
primarily to the following techniques: 1) Using a purely functional, statically-
typed, polymorphic language, we are able to reason about most of the system
components using only their types. And, 2) We structure the system so as to
minimize the amount of code that must be reasoned about explicitly. We do
this using monads, a mechanism previously used for modularizing interpreters.
Different monadic types are assigned different security levels, and thereby indi-



vidual applications using effects (such as accessing low security memory) may
be validated automatically and statically according to a security policy.

There have been a number of attempts to develop secure OS kernels: PSOS
[24], KSOS [19], UCLA Secure Unix [37], SAT [5], KIT [2], EROS [31], and MASK
[39] among others. There has also been some work using functional languages
to develop high confidence system software: the Fox project at CMU [14] is
a case in point of how typed functional languages can be used to build reliable
systems software (e.g., network protocols, active networks); the Ensemble project
at Cornell [4] uses a functional language to build high performance networking
software; and the Switchware project [1] at the University of Pennsylvania is
developing an active network in which a key part of their system is the use of a
typed functional language.

While our approach does not provide full system assurance automatically,
as with the type-based approach, many large components of the system are
verified automatically (by the type system); this aids verification of the global
system security property. This approach to guaranteeing security underlies the
construction of the OSKer3 operating system kernel.

Formulating security policies in terms of non-interference goes back to the
work of Goguen and Meseguer [10, 11]. Our notion of separation is basically the
non-interference of Goguen and Meseguer; although for simplicity of the current
presentation our approach only allows for an “interferes” relation that is the
identity relation (i.e., no domain can interfere with another). Haigh and Young
[13] and Rushby [28] have extended this work to the intransitive case (where the
“interferes” relation is not required to be transitive). Non-interference has been
extended to concurrent [33, 6] and probabilistic models [12].

Modeling concurrency by resumptions was introduced by Plotkin [26, 30].
Moggi showed how resumptions could be modeled with monads [23] and our
formulation of resumptions in terms of monad transformers is that of Papaspyrou
[25]. Concurrency can also be handled by continuations [38, 7, 8]. Resumptions
can be viewed as a disciplined use of continuations. Using resumptions rather
than arbitrary continuations makes reasoning about our system easier.

3 Background

Monads [23] can be understood as abstract data types for defining languages
and programs 4. A monad ADT can encapsulate such language features as state,
exceptions, multi-threading, environments, and CPS. Although combinations of
such features can be encapsulated in a single monad, a more modular approach,
in which each feature can be treated separately, is achieved with monad trans-
formers [23, 18, 17]. Monad transformers allow us to easily combine and extend
monads. (A monad is extended similarly to how a class is extended using inheri-
tance in object oriented languages: what makes sense in a monad “class” makes
sense in the “subclass” created by inheritance.) In this section we will introduce
3 OSKer stands for “Oregon Security Kernel.”
4 An introduction to monads can be found in Wadler [36].



monads and monad transformers, we will then describe the resumption monad
transformer: a monad for concurrency.

3.1 Monads and Monad Transformers

A monad is a triple 〈M, η, ?〉 consisting of a type constructor M and two opera-
tions:

η : a → M a (unit)
(?) : M a → (a → M b) → M b (bind)

The η operator is the monadic equivalent of the identity function, it brings an
element into the monad. The ? operator gives a form of sequential composition.
These operators must satisfy the monad laws:

(η v) ? k = k v (left unit)
x ? η = x (right unit)

x ? (λa.(k a ? h)) = (x ? k) ? h (assoc)

In what follows we often use the � operator, defined in terms of ? thus:

v � k = v ? λ .k

The identity monad 〈Id, ηId, ?Id〉 is defined as follows:

Id a = a

x ?Id k = k x

ηId x = x

Another example is the state monad 〈St s, ηSt, ?St〉 defined as follows:

St s a = s → (a× s)
η(St s) x = λσ : s.(x, σ)

x ?(St s) f = λσ0. let (a, σ1) = x σ0 in f a σ1

u(∆) = λσ.((),∆ σ)
g = λσ.(σ, σ)

Here, () signifies both the unit type and the single element of that type. The op-
erators u and g, for updating and getting the state respectively, are defined only
for the St s monad. Such monad specific operators are referred to as improper
morphisms.

There are various formulations of monad transformers, we follow that given
in [18] where a monad transformer consists of a type constructor T, a mapping
from a given monad 〈M, ηM, ?M〉 to a new monad TM = 〈TM, η(T M), ?(T M)〉,
and an associated function liftT. The function liftT : M a → TM a performs
a “lifting” of computations in M to computations in (TM); and will generally
satisfy the Lifting Laws [17]:

lift ◦ ηM = η(T M)

lift(x ?M f) = (lift x) ?(T M) (lift ◦ f)



These laws ensure that a monad transformer adds features without changing
features of the base monad M.

As an example, the state monad St s can be written more generally as the
monad transformer StateT s which transforms M. The definition is in Figure 4.
Note that the monad transformer StateT s applied to the identity monad Id gives
the original St s monad.

StateT s M a = s → M(a× s)
η x = λσ. ηM(x, σ)
x ? f = λσ0. (x σ0) ?

M
(λ(a, σ1).f a σ1)

lift x = λσ. x ?
M

λy. ηM(y, σ)
u(∆ : s → s) = λσ. ηM((), ∆ σ)
g = λσ. ηM(σ, σ)

ResT M a = µR.Done a + Pause (M(R a))
η x = Donex
(Done v) ? f = f v
(Pause m) ? f = Pause(m ?

M
λr.η(r ?

M
f))

step φ = Pause(φ ?
M

λv.ηM(Done v))

Fig. 4. The State and Resumption Monad Transformers (StateT s) and ResT. The unit
and bind of the new monads are η and ?, respectively, while those of the transformed
monad M are subscripted.

3.2 Resumption-based Concurrency and ResT

This section introduces concurrency based on the resumption monad trans-
former, the definition of which can be found in Figure 4. How resumption based
concurrency works is best explained by an example. We define thread to be a
(possibly infinite) sequence of “atomic operations.” We make this notion precise
below, but for the moment, assume that an atomic operation is a single machine
instruction and that a thread is a stream of such instructions characterizing a
program execution. Consider first that we have two simple threads a = [a0; a1]
and b = [b0]. According to the “concurrency as interleaving” model of concur-
rency, concurrent execution of threads a and b means the set of all their possible
interleavings: {[a0; a1; b0], [a0; b0; a1], [b0; a0; a1]}.

But how do computations in a resumption monad correspond to threads?
If the atomic operations of a and b are computations of type M () , then the
computations of type ResTM () are the set of possible interleavings:

Pause (a0 �M ηM(Pause (a1 �M ηM(Pause b0 �M ηM(Done ())))))
Pause (a0 �M ηM(Pause (b0 �M ηM(Pause a1 �M ηM(Done ())))))
Pause (b0 �M ηM(Pause (a0 �M ηM(Pause a1 �M ηM(Done ())))))

Closer comparison of these two reveals that, instead of using the lazy “cons”
operation (h : t) as in the stream definition of concurrency above, the monadic
version uses something similar: Pause (h �M ηMt). This is important because
threads may be infinite, and the laziness of Pause allows infinite computations
to be constructed in (ResTM) just as the laziness of (h : t) allows infinite streams
to be constructed.



Finally, we note that the resumption semantics of concurrency involves the
elaboration of all possible thread interleavings, and that, while such a semantics
may be expressed monadically via the non-determinism monad [23, 18], it is not
computationally tractable. We choose instead to pick out a single particular
interleaving via a scheduler.

4 “By Construction” Properties of Monad Transformers

We get a number of useful properties by construction through the use of monad
transformers. The state monad transformer’s lift mappings have two principal
uses here. First, lifting preserves stateful behavior. In Figure 2 for example,
this means that Hi and Lo operations behave the same when lifted to the ker-
nel monad K as at their respective base monads. This is formally captured in
Section 4.1 below. Furthermore, liftings also delimit the effects of stateful oper-
ations on separate domains, and this phenomenon—which we call atomic non-
interference—is described in detail in Section 4.2.

4.1 State Monads and Their Axiomatization

This section presents an algebraic characterization of state monads. Intuitively,
a state monad is a monad with non-proper morphisms to manipulate state.
The behavior of these non-proper morphisms is captured by axioms below. Not
surprisingly, it is then demonstrated that the state monad transformer creates
new state monads, and preserves existing state monads.

State Monad Structure. The quintuple 〈M, η, ?, u, g, s〉 is a state monad struc-
ture when:

1. 〈M, η, ?〉 is a monad with operations: unit η : α → M α and bind ? : M α →
(α → M β) → M β

2. update operation on s is u : (s → s) → M()
3. get operation on s is g : M s

We will refer to a state monad structure 〈M, η, ?, u, g, s〉 simply as M if the
associated operations and state type are clear from context.

State Monad Axioms. The following axiomitization of the state monad is not
meant to be complete. Rather, it reflects the properties of state monads required
later in the proofs.

Let M = 〈M, η, ?, u, g, s〉 be a state monad structure. M is a state monad if
the following equations hold for any f, g : s → s,

u f ? λ .u g = u (g ◦ f) (sequencing)

g ? λσ0.u (λ .σ0) = η() (cancellation)



The (sequencing) axiom shows how updating by f and then updating by g is
the same as just updating by their composition (g ◦f). The (cancellation) axiom
requires that overwriting the state with the result of an immediately-preceding
g operation has no effect.

For state monad 〈M, η, ?, u, g, σ〉, a consequence of (sequencing) we use later
is:

u f � init = init (clobber)

where init is defined as: u (λ .σ0) for some constant state σ0.

Theorem 1 (StateT creates a state monad). For any monad M, let monad
M′ = StateT stoM, u : (sto → sto) → M′() and g : M′ sto be the non-proper
morphisms added by (StateT sto). Then 〈M′, ηM′ , ?M′ , u, g, sto〉 is a state monad.

Theorem 2 (StateT preserves stateful behavior). For any state monad
M = 〈M, η, ?, u, g, sto〉, the following state monad structure is a state monad:

〈StateT s M, η′, ?′, lift ◦ u, liftg, s〉

where η′, ?′, and lift are the monadic unit, bind, and lifting operations, respec-
tively, defined by (StateT s).

4.2 Formalizing Atomic Non-interference

The second “by construction” property of monad transformers relates to how
their associated lift mappings delimit stateful effects in monads created from
multiple applications of the state monad transformers (e.g., the kernel monad K
in Figure 2). This property—atomic non-interference—is useful for proving the
security property below in Section 5.3.

Atomic Non-interference Relation #. For any monad M with bind opera-
tion ?, define the non-interference relation # ⊆ M ()×M () so that, for ϕ, γ : M (),
ϕ # γ holds if and only if:

ϕ � γ = γ � ϕ

Theorem 3 (Atomic Non-interference of updates). Let M be the state
monad 〈M, ηM, ?M, uA, gA, A〉. By Theorem 1, the following structure is also a
state monad: M′ = 〈StateTB M, ηM′ , ?M′ , uB , gB , B〉. Then, for all δA : A → A
and δB : B → B,

(uB δB) #M′ lift(uA δA)

Theorem 4 (Non-interference Preserved by Monad Transformers). Let
M be a monad with two operations, a : M () and b : M () such that a#M b. Then,

(lift a) #(T M) (lift b)

where T is a monad transformer and lift : M a → (TM) a.



5 Stepwise Development of a Secure OS Kernel

In monadic event systems, events are programs in the Event language, and traces
of events are the denotations of these programs according to a resumption-
monadic semantics. The abstract syntax and resumption semantics of the lan-
guage of events are presented below. The Event language contains sufficient
expressiveness to allow for potentially infinite streams of operations because of
the inclusion of loops. More importantly, it allows for expression of potentially
interfering programs as well.

Abstract Syntax for the Event Language. Below is an abstract syntax for
Event:

Event ::= V ar:=Exp | skip | Event;Event |
if Exp then Event else Event | while Exp do Event

Exp ::= V ar | Integer

5.1 Shared-State Concurrency with Global State (system 0)

In this section, we introduce the most basic model for shared-state concurrency
is constructed. The monadic event system described in this section corresponds
to the point labelled with “0” in Figure 3.

Monad Hierarchy Using the monad transformers ResT and StateT defined
in Section 3, we define the monad hierarchy for shared-state concurrency with
global state. This monadic event system is degenerate in the sense that the For
any monad M, this hierarchy is:

Gl = StateT G M K = Gl R = ResT K

Here, state type G is Name → Integer.
Associated with these monad constructions are a number of non-proper mor-

phisms (i.e., monadic operators other than η and ?). These are:

uG : (G → G) → Gl()
gG : Gl G
liftG = id

stepG : K a → R a
stepG ϕ = PauseLo (ϕ ?

K
λv.ηK(Done v))

The morphism uG applies a state-to-state map to the current G state in the Gl
monad, while the morphism gG reads and returns the current G state. The lifting
liftG reinterprets Gl computations in the kernel monad K. The aforementioned
morphisms are all defined by applications of the StateT monad transformer. The
morphisms stepH and stepL create a “paused” K computation in either the Hi or
Lo security levels. The “step” functions result from the application of the ResT
transformer.



Semantics for the Event Language. The resumption-monadic denotational
semantics for system behaviors is listed below. It is just what one would expect
given recent work on the resumption-monadic semantics of concurrency [25].

ev : Event → R ()
ev (x:=e) = (exp e) ?

R
λv. (load ◦ uG)[x 7→ v]

ev (e1;e2) = (ev e1) �R (ev e2)
ev skip = (load ◦ uG) (λi.i)
ev (if b then e1 else e2) = exp b ?

R
λv. if v = 0 then (ev e1) else (ev e2)

ev (while b do c) = mwhile (exp b) (ev c)
mwhile b ϕ = b ?

R
λv. if v = 0 then ϕ �R (mwhile b ϕ)

else (load ◦ uG) (λi.i)

exp : Exp → R Integer
exp x = (load gG) ?

R
λσ.ηR(σ x)

exp i = ηR i

load : Gl a → R a
load = step ◦ lift

Please observe that because each observable event (namely u or g) is wrapped
by a load, each such event is Pause’d.

5.2 Basic Separation (system 1)

Event systems contain trace projections based on security level—we write these
as “↓Hi” and “↓Lo.” Monadic event systems need a similar capability, which is
achieved by refining the resumption monad transformer of Papaspyrou [25] to
reflect the Hi and Lo security levels. The refined resumption monad transformer
is:

ResTM a = µR.Done a + PauseLo (M(R a)) + PauseHi (M(R a))

The unit (η) is Done, and the bind (?) of the transformed monad is defined just
as one would expect:

(Done v) ? f = f v
(PauseLo ϕ) ? f = PauseLo (ϕ ?

M
λr. ηM(r?f))

(PauseHi ϕ) ? f = PauseHi (ϕ ?
M

λr. ηM(r?f))

Using this resumption transformer and StateT, we define the monad hierarchy
from Figure 3 for any monad M as:

Hi = StateT H M

Lo = StateT L M

K = StateT H (StateT L M)

R = ResT K

Here, L and H are state types equal to Name → Integer.
Associated with these monad constructions are a number of non-proper mor-

phisms (i.e., monadic operators other than η and ?). These are:



uL : (L → L) → Lo()
gL : Lo L
liftL : Lo a → K a
stepL : K a → R a
stepL ϕ = PauseLo (ϕ ?

K
λv.ηK(Done v))

uH : (H → H) → Hi()
gH : Hi H
liftH : Hi a → K a
stepH : K a → R a
stepH ϕ = PauseHi (ϕ ?

K
λv.ηK(Done v))

The morphisms uL and uH apply a state-to-state map to the current state
in their respective monads, while the morphisms gL and gH read and return the
current state. The liftings liftL and liftH reinterpret Lo and Hi computations,
resp., in the kernel monad K. The aforementioned morphisms are all defined by
applications of the StateT monad transformer. The morphisms stepH and stepL
create a “paused” K computation in either the Hi or Lo security levels. The
“step” functions result from the application of the ResT transformer.

By Theorems 1 and 2, we know that the monad K is a state monad with the
operations lifted from the Hi and Lo monads. That is, the following are state
monads:

〈K, ηK, ?
K
, (liftL ◦ uL), (liftL gL), L〉 〈K, ηK, ?

K
, (liftH ◦ uH), (liftH gH), H〉

Event Semantics (system 1) There are two semantics for Event correspond-
ing to the Hi and Lo security levels—these are evH and evL, respectively. The
low-security resumption semantics evL and expL. The high-security semantics
(not shown), evH and expH, is analogous5.

evL :: Event → R ()
evL (x:=e) = (expL e) ?

R
λv. (loadL ◦ uL)[x 7→ v]

evL (e1;e2) = (evL e1) �R (evL e2)
evL skip = (loadL ◦ uL) (λi.i)
evL (if b then e1 else e2) = expL b ?

R
λv. if v = 0 then (evL e1) else (evL e2)

evL (while b do c) = mwhile (expL b) (evL c)
mwhile b ϕ = b ?

R
λv. if v = 0 then ϕ �R (mwhile b ϕ)

else (loadL ◦ uL) (λi.i)

expL : Exp → R Integer
expL x = (loadL gL) ?

R
λσ.ηR(σ x)

expL i = ηR i

loadL : Lo a → R a
loadL = stepL ◦ liftL

The semantics evL (evH) creates traces by injecting the Lo (Hi) operations
into the PauseLo (PauseHi) side of R. Let e be (x:=1) in the following:

(evL e) = PauseLo (uL[x 7→ 1] �K ηK(Done ()) (1)

(evH e) = PauseHi (uH [x 7→ 1] �K ηK(Done ()) (2)

Note that the assignment in e is mapped by evL and evH into lifted operations
on different monads (i.e., Lo and Hi in (1) and (2), resp.). Then, this security
5 The evH semantics is obtained from evL by replacing all “L”-suffixed operations

(e.g., “uL”) by their corresponding “H”-suffixed operations (e.g., “uH”).



assignment is maintained in the resumption-trace by the PauseLo and PauseHi
tags. Because uL and uH operate on different states, these assignments can not
interfere (in the sense of Section 4.2). The monadic structure is the key to making
this approach work.

Below are two schedulers for the basic separation model, withHi and withoutHi,
for a simple monadic event system. The schedule (withHi lo hi) creates a Lo
and Hi threads from event behaviors lo and hi, resp., in a round-robin fashion.
Schedule (withoutHi lo) creates a single Lo thread.

withHi : Event → Event → R ()
withHi lo hi = weave (evL lo) (evH hi)
weave : R () → R () → R ()
weave (PauseLo ϕ) (PauseHi γ) =

PauseLo (ϕ ?
K

λrlo. ηK(PauseHi (v ?
K

λrhi.ηK(weave rlo rhi))))

withoutHi : Event → R ()
withoutHi lo = evL lo

5.3 Security for this setting: take separation

This section develops a non-interference style specification of process separa-
tion for monadic event systems. The question we answer is: given a resumption
computation representing a schedule of threads on separated domains, how do
we specify that those processes do not interfere? The answer we provide in this
section adapts a technique for proving properties of streams to the resumption-
monadic setting.

A common technique for proving a property of infinite lists is to show that
the property holds of all finite approximations (i.e., finite initial prefixes) of the
list. A well-known version of this technique is the take lemma [3, 9]:

s1 = s2 ⇔ ∀ (n < ω). take n s1 = take n s2

where (take n [v1, . . . , vn, . . .]) = [v1, . . . , vn]. To show two streams s1 and s2 are
equal using the take lemma, one shows that, for any non-negative integer n, each
length n prefix of s1 and s2 are equal.

The security property proved here is analogous to the take lemma—hence
its name. If, for any initial sequence of interleaved Hi and Lo events with n Lo
events obtained from a system execution:

h0 ; l0 ; . . . ; hn ; ln

the effect of its execution on the Lo state should be identical to that of executing
the Lo events in isolation:

l0 ; . . . ; ln

Using the denotational semantics, we make this notion precise:

[[h0 ; l0 ; . . . ; hn ; ln]] �K maskNonLo = [[l0 ; . . . ; ln]] �K maskNonLo

Here, maskNonLo is a stateful operation on the K monad which overwrites
all non-Lo states in the K monad. The particular definition of maskNonLo dif-
fers as the monadic event system is refined, but for our case, it is merely



liftHi(uH (λ .h0)) The operator maskNonLo plays the rôle of ↓Lo in a trace-
based event system. We define two additional helper functions, takeLo and run.
The helper function takeLo picks out the initial sequences containing n Lo events,
and the run function projects schedulings in the resumption monad R back into
the kernel monad K for execution:

takeLo : Integer → R() → R()
takeLo 0 x = Done()
takeLo n (PauseLo ϕ) =

PauseLo (ϕ ?
K

(ηK ◦ (takeLo (n− 1))))
takeLo n (PauseHi ϕ) =

PauseHi (ϕ ?
K

(ηK ◦ (takeLo n)))

run :: R a → K a
run (Done v) = ηKv
run (PauseLo ϕ) = ϕ ?

K
run

run (PauseHi ϕ) = ϕ ?
K

run

We may now formulate and prove take separation for the Basic Separation
system described in Section 5.2:

Theorem 5 (Take Separation). Let lo, hi ∈ Event, then for all natural num-
bers n,

run (takeLo n (withoutHi (evL lo))) � initH

= run (takeLo n (withHi (evL lo) (evH hi))) � initH

where initH = liftHi(uH (λ .h0)) for any arbitrary fixed h0 ∈ H.

Proof of Theorem 5 by induction on n. All binds (?) and units (η) are in the K
monad.

Case n = 0.

run (takeLo 0 (withoutHi (evL lo))) � initH

{defn takeLo} = run(Done ()) � initH

= run (takeLo 0 (withHi (evL lo) (evH hi))) � initH

Case n = k + 1.

run (takeLo (k + 1) (withHi (evL lo) (evH hi))) � initH

= (l1 � h1 � . . . � l(k+1) � h(k+1) � η()) � initH

{right unit} = l1 � h1 � . . . � l(k+1) � h(k+1) � initH

{clobber} = l1 � h1 � . . . � l(k+1) � initH

{l(k+1)#initH} = l1 � h1 � . . . � initH � l(k+1)

{ind. hyp.} = l1 � . . .︸ ︷︷ ︸
hi excised

� initH � l(k+1)

{li#initH} = l1 � . . . � l(k+1) � initH

{right unit} = l1 � . . . � l(k+1) � η()

= run (takeLo (k + 1) (withoutHi (evL lo)))



6 Conclusion

Monads and monad transformers provide a powerful framework for the struc-
turing of high-assurance software systems because they permit an explicit yet
flexible partitioning of the domains-of-effect within a computation. Pure, higher-
order, typed languages that support this style of programming, such as Haskell,
must be considered as modeling and implementation languages for complex,
security-critical software systems.

Monads were originally introduced into pure, higher-order functional pro-
gramming languages to allow principled, effectful programming. Monads per-
mitted functional programmers to program imperatively without imperative
languages. This work demonstrates that the monadic approach to effects has
benefits far beyond the mere imitation of imperative-style; the precise scoping of
effects provided by monads allows information-flow to be managed in a straight-
forward yet mathematically rigorous manner. How such scoping of effects within
imperative languages might be achieved remains an open question.

This paper presents an overview of an approach for constructing and formally
verifying domain separation for systems developed in pure, higher-order, typed
languages such as Haskell. The approach relies fundamentally on the ability of
the language to express all internal effects using monads and to express monad
transformers as a functional construction. Though we use the pure functional
language Haskell as our implementation language, we do not use laziness or type
classes in any essential way; thus our techniques could be applied using the pure
subset of ML. Note that the purity of the language is essential to our approach.

In this paper we have taken a basic model of concurrency, reflected it inside
a programming language type system, and exploited it to build a rich model of
provably non-interfering concurrent execution. We have refined this to the point
where basic mechanisms for process communication are provided.

This work is being done as part of the Programatica project at OGI, where
we are developing tools and techniques to support high-assurance software de-
velopment in Haskell. These techniques are being applied in the validation of the
OSKer security kernel—a novel high-assurance operating system.

The models presented in this paper have been developed in the context of the
development of a multi-level secure operating system written in Haskell called
OSKer. Although the verification of OSKer’s security properties are not com-
plete, the challenges of that verification have inspired this formalism. In particu-
lar, this formalism is rich enough to be extended to realistic system architectures
in which trusted processes (such as cryptographic servers) are allowed to reclas-
sify information. When such extensions are introduced the verification of system
assurance becomes more complex, and involves some local application of tradi-
tional methods, but the overall system validation is still modular and scalable.

Because monad transformers give a notion of composable formal specifica-
tion [17, 15], monad structuring of the event system allows modification without
complete re-verification. Scalable techniques for the development of complex sys-
tems with high confidence in their security properties remains a grand challenge



of computer science. We believe that the ultimate solution to this challenge will
draw heavily from the theory and practice of pure, higher-order, typed languages.
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A Theorems and Proofs

Theorem 1 (StateT creates a state monad) For any monad M, let monad
M′ = StateT stoM and also u : (sto → sto) → M′() and g : M′ sto be the non-
proper morphisms added by (StateT sto). Then 〈M′, ηM′ , ?

M′ , u, g, sto〉 is a state
monad.

Proof.
Case: Sequencing.

uf ?
M′ λ .ug

= λσ0.(uf)σ0 ?
M

(λ〈v, σ1〉.(λ .ug) v σ1) {def. ?
M′}

= λσ0.(uf)σ0 ?
M

(λ〈v, σ1〉.(ug) σ1) {β}
= λσ0.(λσ.ηM〈(), fσ〉)σ0 ?

M
(λ〈v, σ1〉.(λσ.ηM〈(), gσ〉) σ1) {def. u(×2)}

= λσ0.(ηM〈(), fσ0〉) ?
M

(λ〈v, σ1〉.(ηM〈(), gσ1〉)) {β(×2)}
= λσ0.(ηM〈(), g(fσ0)〉)) {left unit}
= u(f ; g) {def. u(×2)}

Case: Cancellation.
g ?

M′ λs.u(λ .s0)
= λσ.ηM〈σ, σ〉 ?

M
λ〈v, σ1〉. (λs.λσ′.ηM〈(), s0〉)v σ1 {def. g, u, ?

M
}

= λσ.ηM〈σ, σ〉 ?
M

λ〈v, σ1〉. (ηM〈(), s0〉) {β}
= λσ. (ηM〈(), s0〉) {left unit}
= u(λ .s0) {def.u}

ut

Theorem 3 (StateT preserves stateful behavior) For any state monad M =
〈M, η, ?, u, g, sto〉, the following state monad structure is a state monad:

〈StateT s M, η′, ?′, (u; lift), lift(g)〉

where η′, ?′, and lift are the monadic unit, bind, and lifting operations, respec-
tively, defined by (StateT s) in Section 3.1.



Proof. Let M′ = TM below. Each step follows from the Lifting Laws listed in
Section 3.1.
Case: Sequencing.

lift(uf) ?
M′ λ .lift(ug) = lift(uf ?

M
λ .ug) = lift(u(f ; g))

Case: Cancellation.

lift(g) ?
M′ λs.lift(u(λ .s0)) = lift(g ?

M
λs.u(λ .s0)) = lift(u(λ .s0))

ut

Theorem 4 (Non-interference of updates) Define state monads M and M′

as the following:

M = 〈M, ηM, ?M, uA, gA, A〉
M′ = 〈StateTB M, ηM′ , ?M′ , uB , gB , B〉

Then, for all δA : A → A and δB : B → B,

(uB δB)#M′() lift(uA δA)

Proof.

(uB δB) �M′ lift(uA δA)

= λσ0.((uB δB) σ0) ?
M

λ〈(), σ1〉.(λ .lift(uA δA)) ()σ1

= λσ0.((uB δB) σ0) ?
M

λ〈(), σ1〉.(lift(uA δA)) σ1

= λσ0.((λσ.ηM〈(), δB σ〉) σ0) ?
M

λ〈(), σ1〉.(lift(uA δA)) σ1

= λσ0.(ηM〈(), δB σ0〉) ?
M

λ〈(), σ1〉.(lift(uA δA)) σ1

= λσ0.(lift(uA δA)) (δB σ0)

= λσ0.(λσ.(uA δA) ?
M

λv.ηM〈v, σ〉) (δB σ0)

= λσ0.(uA δA) ?
M

λv.ηM〈v, δB σ0〉)
= λσ0.(uA δA) ?

M
λv.(λσ.ηM〈v, δB σ〉) σ0

= λσ0.(uA δA) ?
M

λv.(uB δB) σ0

= λσ0.(λσ.(uA δA ?
M

λ .ηM〈(), σ〉) σ0 ?
M

λ〈v, σ〉.(uB δB) σ

= λσ0.(lift(uA δA)) σ0 ?
M

λ〈v, σ〉.(uB δB) σ

= (lift(uA δA)) ?
M

λ .(uB δB)

ut

Theorem 5 (Non-interference Preserved by Monad Transformers) Let
M be a monad with two operations, a : M () and b : M () such that a#M b. Then,

(lift a) #(T M) (lift b)

where T is a monad transformer and lift : M a → (TM) a.



Proof.

lift a?(TM)λ .lift b

= lift(a?Mλ .b)

= lift(b?Mλ .a)

= lift b?(TM)λ .lift a

ut


