
Programatica Tools for Certifiable, Auditable
Development of High-assurance Systems in

Haskell

The Programatica Team

OGI School of Science & Engineering at OHSU
20000 NW Walker Road, Beaverton, Oregon OR 97006, USA

Abstract. The development of high-assurance computational systems
requires sophisticated engineering, comprehensive analysis, and careful
management to ensure that the required levels of functionality and se-
curity are achieved. In this paper, we use the example of developing a
high-assurance implementation of a crypto-chip to show how these needs
are met using the results of the Programatica project at OGI. In par-
ticular, our approach combines three significant components: the use of
Haskell as a semantically rich, formal modeling language; the use of an
expressive programming logic to capture high-level security properties;
and a toolset for managing, maintaining, and auditing the supporting
evidence that is obtained from techniques such as code reviews, testing,
and formal validation. The result is a powerful and new kind of develop-
ment environment that integrates and builds on existing best practices
to support the certification of high-assurance systems.

1 Vision

Programatica is a system for the development of high-confidence software sys-
tems and executable systems specifications. It is inspired by experience using
the language Haskell [6] to model, refine, and implement computational sys-
tems. The goal of the Programatica environment is to support a coherent, but
diverse set of methods for assuring confidence in Haskell programs.

As we have used Haskell, we have used several distinct modes to assure the
fitness of an implementation or model:

1. We test program fragments on ad hoc test cases;
2. We test program fragments on random test cases derived from expected

program properties;
3. We submit code to peer review;
4. We implement algorithms based on published papers;
5. We develop combinator libraries that allow us to program at a very high

level (embedded domain-specific languages); the embedded DSL often more
closely resembles a specification language than an implementation;

6. We reason about equational properties of functional programs;
7. We reason about meta-properties that derive from the type system;



8. We use monadic abstraction to encapsulate effects; and
9. We use Haskell to prototype formal definitions that we embed into other

formal systems, such as HOLCF or SpecWare.

In different high-assurance domains we expect different standards of vali-
dation. In some applications, simply formulating the expected properties and
supporting them with test cases will be a significant threshold of confidence. In
others, static analysis, theorem proving and provably exhaustive testing may be
required. Programatica is designed to accommodate all of these modes individ-
ually or in combination. Programatica provides an open interface for asserting
properties and providing evidence for those properties. Evidence is bound into a
program with a certificate, and certified properties can be combined in a simple
logic. Certificates can be examined to identify the types of evidence that were
used to establish the property, details of how the certificate was validated, the de-
pendence of the certificate on the program or other certificates, and information
about the user who validated the certificate.

Programatica is also intended to support an iterative development environ-
ment in which the program, its properties, and evidence are simultaneously de-
veloped and improved. We describe this as Extreme Formal Methods: we expect
properties to be developed in parallel with the code, just as test cases are de-
veloped in extreme programming [1]. As the code matures (and the architecture
stabilizes) the methods used for supporting the properties will be refined.

1.1 Why Haskell?

Haskell is at the core of Programatica. It is the language in which the computa-
tional models are expressed. What are the essential features of the computational
modeling language?

– Haskell is a pure language that supports equational reasoning. One key
premise of Programatica is that programs should behave “like math.” It
should be straightforward to calculate with programs. It should be possible
to substitute values into program fragments with predictable results.

– Haskell has a very expressive type system that assists in guaranteeing pro-
gram safety, and in supporting the natural expression of algorithms. It is one
of the most expressive type systems in use.

– Haskell can naturally and precisely model virtually any side effect in a pro-
gramming language. The type system of Haskell supports monadic abstrac-
tion. Monads let Haskell implement mathematical models of side effects and
their propagation. Monads can be used to model mutable state, concurrency,
backtracking, non-determinism, or any combination of these features. Mon-
ads are explained in more detail in Section 3.

– Haskell is an expressive, mature language in which experts can program ef-
fectively. While not the most popular language today, Haskell is arguably one
of the most elegant. It grew out of the programming language research com-
munity and has been a testbed for advanced features in type systems, class
based abstractions, and features supporting modular program development.



1.2 From Haskell to Programatica

To realize the Programatica vision of simultaneous development of a program
and its properties we have developed a very expressive logic for Haskell, called
P-logic. We have extended Haskell to support property definitions and assertions
in P-logic. P-logic remains an active area of research in the project.

In this paper, we show how these pieces fit together with the Programatica
toolset using a case study about a simple programmable crypto-chip. We demon-
strate the use of Haskell as a modeling language to describe the functional behav-
ior of the chip (Section 3); we show how key, high-level security properties—such
as channel separation—are expressed as P-logic assertions (Section 2); and we
explain how the Programatica toolset can be used to support the task of gath-
ering and maintaining evidence (Section 4). For reasons of space, we will not be
able to discuss all of the details in this development. We will aim instead to give
an impression of the role that the different components play, and an insight into
the potential that they offer together for high-assurance software development.

In a companion paper in this volume we present the status of the Oregon
Separation Kernel (OSKer), a much larger Programatica artifact that models a
multi-level secure operating system. In the supplementary materials we present
details of the Programatica logic and a paper with a detailed proof of separation
for an OSKer-like system.

2 Channel Separation for a Simple Crypto-Chip

The diagrams in Figure 1 provide an overview of the chip design that we study
in this paper. The overall structure is loosely based on the General Dynamics
AIM (Advanced Infosec Machine) crypto-chip. The chip processes packets of

���������	��


����
�������

���������	��

���	����� ����

����

����

�����	���

���

���

���

��

��

��

Fig. 1. The conceptual view (left) and concrete block structure (right) for a pro-
grammable crypto-chip.

data, each of which is tagged with a channel id. The conceptual view in Figure 1
suggests how these packets are multiplexed and demultiplexed, processing the
packets on each channel independently of the packets on other channels. (To



keep the diagram simple, we show only three channels in these illustrations.) It
is easy to model this view of the chip in Haskell as a function:

chip :: Algs -> ([Packet] -> [Packet])

The Algs parameter here specifies a mapping of algorithms (e.g., for encryption,
filtering, etc.) to channels; this is the programmable component of the chip. The
result is a packet filter—a function of type [Packet] -> [Packet]—that takes
a list of packets as inputs and returns a processed list as output. Each such packet
contains a channel identifier and a payload (i.e., the data to be processed):

type Packet = (ChannelId, Payload)

The block diagram in Figure 1 is much closer to the physical implementation
of the chip on silicon. From this viewpoint, it is clear that a much greater portion
of the hardware is actually shared between all of the channels, including two
processing units (the upper and lower engines), a shared memory that connects
them, and the register file and algorithm storage unit for the lower engine. Only
one channel is active at any given time; the register file and algorithm for each
of the other channels are (at least conceptually) swapped out to the banks of
storage shown on the right of the block diagram.

The challenge now is to ensure that the greater level of sharing in the im-
plementation does not compromise the logical separation of the channels in the
conceptual model. More specifically, we need to check that there is no possibility
for the data or algorithms associated with one channel to interfere with, monitor,
or affect the data and algorithms on another channel. This high-level property
of the chip can be formulated concisely and elegantly as a P-logic property:

assert Separation = All algs :: (ChannelId -> Alg).
All select :: (ChannelId -> Bool).
{filter (select . fst) . chip algs}
===

{chip algs . filter (select . fst)}

The intuition here is that, if we install a filter on the output of the chip that
removes all packets from some specified set of channels, then we get the same
effect as if we had placed the filter instead on the input to the chip. This property
can also be depicted graphically, as shown in Figure 2. In the P-logic formula-
tion, the All keyword is a universal quantifier indicating that, for all possible
mappings algs of algorithms to channels, and for all possible sets of channels
(which we represented by a predicate select), the result of placing the filter on
the output is the same as the result obtained when the filter is on the input.
If this property holds, then we can be sure that the desired separation between
channels is achieved:

– No channel can produce outputs that depend on the inputs passed to other
channels. To see this, note that we could install a filter on the input to remove
the packets for all but one channel. The Separation property guarantees
that the chip will produce exactly the same output in this situation as it
would if we had not installed the filter.



��

��

��

��

��

��

�

Fig. 2. A graphical representation of the high-level channel separation property. The
square component (on the input of the left hand side and again on the output of the
right hand side) is a filter that removes all packets associated with some (arbitrary)
set of channels.

– No channel can generate spurious outputs or generate output on another
channel. To see this, note that we could install a filter on the output to
prevent such output, but the Separation property guarantees that the result
will be the same as if no such filter were present.

There are many different ways that we might attempt to verify this property,
including some combination of developer testing, team code-reviews, or formal
methods such as model checking and theorem proving. Of course, in the process,
we might instead uncover some bug or logical flaw in the design that causes
the property to fail. In that situation, we would also expect the discovery to
provide information suggesting how the problem might be fixed—perhaps adding
extra logic, for example, to zero out a section of memory. Once this is done,
we would need to go back and complete our attempt to verify the separation
property, redoing those parts that are impacted by the change to ensure that
no new problems have been introduced, but not wasting time or effort on places
where the changes have no effect. These are exactly the kinds of tasks that the
Programatica toolset (Section 4) is designed to support.

3 Modeling the Crypto-Chip in Haskell

In the previous section, we described the general structure of the chip, together
with a critical Separation property. Importantly, we were able to do both of
these things at a high-level—that is, in a way that is meaningful and useful to
anyone who is interested in using the chip, even if they do not know anything
about its implementation. To establish the Separation property, however, we
must first model it in detail, reflecting the way that it is implemented in silicon.

At just under 260 lines of Haskell code, the model of the crypto-chip that we
have built is quite concise, but still too long to include in full in this short paper.
Instead, we will restrict the code in this paper to short but illustrative fragments.
One important aspect of the model is its modular construction from six smaller
components, as shown in Figure 3. Three of those components (accounting for
just over 50% of the code) provide fairly general purpose libraries for common
datatypes such as finite maps, state transformers, and an abstract datatype of



������

�������	


����

�
���
��������� ������	�


����������������

��������
����������

���
��������

��������
����������

Fig. 3. Our formal model of the crypto-chip is captured in six Haskell modules.

memories (which the model uses for both the register files and shared memory
components of the chip). Of course, like all Haskell programs, the model also
makes use of standard functions and operators provided in the Haskell standard
prelude. Any effort that we invest in documenting and validating the behavior
of these parts of the system, will, like the code itself, be a resource that we can
reuse and build on in other projects.

The remaining three components (MemMonad, Alg, and ChipModel) are more
application specific, tailored to the particular needs of modeling the crypto-chip.
The top level entry point is the function chip mentioned previously:

chip :: Algs -> [Packet] -> [Packet]
chip algs

= catMaybes . loop (onePacket algs) (initMem, initRegs)

In fact the bulk of the work is done by a function onePacket, which describes
the steps involved in processing a single input packet:

onePacket :: Algs -> Packet -> State (Mem, Regs) (Maybe Packet)
onePacket algs (chan, ws)
= do regs <- inSnd readState

rng <- inFst (malloc ws)
let alg = algs ‘at‘ chan

regfile = regs ‘at‘ chan
valid = includes rng
code = runAlg (alg (fst rng) regfile)

res <- inFst (runProtected valid code)
case res of

Nothing -> return Nothing
Just regfile’ -> let regs’ = extend chan regfile’ regs

in do inSnd (setState regs’)
packet <- inFst (readPacket rng)
return (Just (chan, packet))

This code makes essential use of state monads to structure and control the use
of side effects. In fact, the support that Haskell provides for programming with



monads is one of the features that makes it particularly attractive for use in secu-
rity related applications. The term ‘monad’ carries little insight, and newcomers
to Haskell are sometimes intimidated by the origins of monadic programming in
abstract mathematics. But, in fact, monads can be understood as an example of
something that is very familiar to programmers: an abstract datatype (ADT).

Programmers have long understood the benefits of abstract datatypes (ADTs)
for traditional data structures such as stacks and queues. A typical ADT pro-
vides a well-defined interface while also hiding details its implementation. In
particular, in a programming language that supports and enforces the abstrac-
tion of an ADT, the implementor can be sure that internal data structures will
not be visible and hence cannot be corrupted or misused by clients of their ADT.

From this perspective, monads are just ADTs for describing computations.
The chip and onePacket functions use a monad called State (Mem, Regs) to
describe stateful computations that can access and modify the global memory
of the chip (Mem), the bank of saved register files (Regs), . . . and nothing else.
Inside the definition of onePacket, we see computations in which access to the
state of the chip is even more restricted. For example, in a statement of the
form inFst c, the command c has access only to the first (Mem) component
of the global state, while, in a statement of the form inSnd c, the command
c has access only to the second (Regs) component. Further restrictions on a
command’s ability to access and modify the state are imposed in the command
runProtected valid code, which aborts the execution of code if it makes any
attempt to access read from or write to any location that is not accepted by
the valid predicate. For example, in the code for onePacket, the command
inFst (malloc ws) is used to allocate space in shared memory for the data
portion ws of the input packet. The range rng of addresses in which that packet
is stored is then used to restrict access to those locations alone in shared memory
when the code associated with that channel is executed.

These examples only begin to demonstrate the facility that monads provide
for encapsulating and controlling the impact of side-effects. In the particular case
of restricted access to memory, the monads that we have used provide a more
fine-grained and robust level of control than the hardware based memory pro-
tection mechanisms that are available on some hardware platforms. The latter
is typically provided to programmers via an operating system API, that is not
itself part of the programming language, and relies on careful coding to maintain
some distinction between kernel- and user-mode code. Furthermore, a language
like Haskell allows programmers to define and use new monads, possibly cus-
tomized to suit the needs of a particular application, and with the potential to
control a much wider range of computational effects than just state, including
exception handling, I/O, read-only memory, concurrency, and so on.

4 Programatica Tools for Managing Evidence

Researchers in industry and academia have attacked the challenges of high assur-
ance software development in many ways, demonstrating concretely how the use



of systematic design processes, rigorous testing, or formal methods can each con-
tribute significantly to increased reliability, security, and trustworthiness. There
are obviously some significant differences between these techniques, but there is
also a unifying feature: each one results in some tangible form of evidence that
provides a basis for trust. Examples of such evidence might include a record
of the meeting in which a code review was conducted, the set of test cases to
which the code was subjected, or a formal proof that establishes the validity of a
critical system property. In practice, however, it can be difficult to manage and
maintain this collection of evidence as the project that it refers to continues to
grow and evolve. To do this effectively, for example, we must track dependencies
between code and evidence, identifying situations where a change in the program
might invalidate, and so trigger a review of some portions of the evidence.

The Programatica toolset provides a program development environment for
Haskell and includes features to support understanding, construction, and main-
tenance of software. Critically, however, the Programatica tools also facilitate
and support effective use of evidence throughout a project’s life. In particular,
these tools support high assurance software development with Haskell, allowing
users to integrate program code with statements of key system properties in
P-logic; to capture and collate a wide range of evidence with source materials;
to track dependencies and maintain consistency; to automate the construction,
combination, and reuse of evidence; and to understand, manage, and guide fur-
ther development and validation efforts. Programatica supports this wide range
of activities by adopting a certificate abstraction as a mechanism for encapsulat-
ing evidence. This results in a flexible and extensible architecture in the style of
some component-based programming systems that allows many different types
of evidence to be accessed and manipulated using the same generic interface.

The screenshot in Figure 4, for example, shows the PFE (Programatica front-
end) browser being used to explore evidence of the Separation property of the
ChipModel example from the previous section. The browser has many of the fea-
tures of current integrated development environments. On the left, for example,
a tree-based project navigator allows the user to move between different sections
of the model. On the right, the source code for the ChipModel is displayed with
the benefits of syntax-coloring, hyperlinks, and mouse-overs that provide extra
information to facilitate browsing of code, properties, and certificates. Notice
that the source code includes both definitions of executable code like chip and
assertions of properties like Separation. The icon that appears next to the state-
ment of Separation in Figure 4 indicates that a certificate has been provided
for this particular property; further details about the certificate are provided in
the pop-up window, which is brought up by clicking on the icon. The toolset
provides many other important features not shown here, including facilities for
creating and editing different types of certificate, for maintaining and inspecting
dependency information, and for reporting on project status.

Each different type of certificate has an associated server component that
acts as a plug-in to the Programatica toolset. In particular, servers are respon-
sible for translating between the Haskell and P-logic notation used in source



Fig. 4. Using the PFE browser to examine evidence for the Separation property.

documents and the syntax of an external validation tool such as a test-case
generator, model checker, or theorem prover. Servers are also responsible for
capturing and packaging context from source documents so that it can be used
by an external tool. In the case of an external theorem prover, for example, we
refer to this as ‘theory formation’ because it requires assembling a theory that
includes any facts and definitions that are needed to complete the proof of a
particular theorem. To date, we have built servers that deal with several kinds
of evidence, including

– Information provided by textbooks, component specifications, and other re-
sources. We describe this as “I say so” evidence because the trust that we
place in it is ultimately determined by the trust that we place in the source.
Certificates of this kind may, for example, include a pointer to a technical pa-
per where a particular property is established, or perhaps include documents
that record the outcome of a code review.

– Individual test cases. A certificate of this type includes input data for a spe-
cific test case scenario together with the output that is expected. When the
program is modified, the test case can be executed automatically and the
results compared with the expected output to check that existing function-
ality has not been broken by the changes. This is a key technique in extreme
programming, but shows up here as a special case of certificate management.

– Random testing. This server translates the portions of the main program
that are needed in the definition of a particular property to a script for use
with the QuickCheck library [2]. Here, the benefits that we obtain by testing
with many different inputs must be weighed against the quality/relevance of
the random test cases that are generated by QuickCheck.



– Formal proof. This server translates Haskell programs into the notation of
the Alfa proof editor [4], which allows the construction of formal proofs in a
logical framework based on constructive type theory.

These examples cover a fairly wide range of evidence types, and so demonstrate
the generality of the Programatica certificate abstraction. In current work, we
are also investigating the possibility of adding additional server types to inter-
face with other external tools including a free-theorem generator [7], a bounded
model-checker, and the Isabelle theorem prover [5]. It is also our intention to
provide documentation that will enable independent users of Programatica to
develop their own servers and so interface to other external validation tools.

5 The Future of High-Assurance Software Development

International initiatives such as the Common Criteria [3] provide important stan-
dards for evaluation and assurance of software supporting IT security by building
on current best practices in industry, government, and academia. The Common
Criteria also recognizes the potential for formally verified design and testing in
critical applications where the highest levels of assurance are required (i.e., at
EAL5 to EAL7), but its evaluation methodology does not yet extend to these
cases.

Programatica offers a powerful new vision for the future of high-assurance
software development. Its design extends current evaluation methodologies, read-
ily supporting and integrating the different kinds of evidence that they require.
Moreover, Programatica offers an evolution path for introducing and applying
formal methods to document and validate essential functional properties of crit-
ical software and hardware systems at the highest assurance levels.

References

1. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

2. Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. In Proceedings of the Fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279. ACM Press, 2000.

3. Common Criteria: The Standard for Information Security.
http://www.commoncriteria.org/.

4. Thomas Hallgren et al. The Alfa proof editor. http://www.cs.chalmers.se/~

hallgren/Alfa/.
5. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
6. Simon Peyton Jones and John Hughes, editors. Report on the Programming

Language Haskell 98, A Non-strict Purely Functional Language, 1999. Available
from http://www.haskell.org/definition/.

7. Philip Wadler. Theorems for free! In Proceedings 4th Int. Conf. on Funct. Prog.
Languages and Computer Arch., FPCA’89, London, UK, 11–13 Sept 1989, pages
347–359. ACM Press, New York, 1989.


