A Logic for Haskell

Dick Kieburtz
OGI School of Science & Engineering
Oregon Health & Science University
September 25, 2001
Updated April 17, 2003
Overall Objectives

• A verification logic for Programatica
 – To support formal reasoning about properties of programs
 – The term language is Haskell 98
 • Initially, omitting monads and classes
 – First-order predicate formulas with equality
 • Extended to a modal μ-calculus
 – μ-calculus adds least and greatest fixed-point formulas
 – A modality designates predicates that require evaluation of a term for their satisfaction

• A tool to certify properties asserted of a program by (interactive) proof construction
 – Libraries of proof strategies suggested by human intuition will be programmed to use in certifying properties by verification
Technical Approach

• **Define a logic whose standard interpretation is given in terms of Haskell semantics**
 – Programatica logic expresses properties of well-typed Haskell terms
 • Avoids translating to a more primitive modeling language

• **Check soundness of each rule of the logic with respect to a Haskell semantics model**
 – Semantics is formulated independently of the logic

• **Develop strategies for computational proof construction**
 – To support verification of program properties with machine-checked proofs
This Talk

• Introduction to the Programatica logic
• Semantic interpretation of the logic
• Inference rules
• Soundness
• Overview of tool support
P-logic

- A modal logic for Haskell
 - **Predicates** range over Haskell terms
 - **Predicate formulas** are constructed with
 - lifted data constructors (term congruence operators)
 - propositional connectives
 - least and greatest fixed-point binders, Lfp and Gfp
 - $\$-modality designates a well-definedness requirement
 - **Congruence formulas** relate properties to the shapes of terms
 - e.g. the formula \((P : Q) \), where \(P \) and \(Q \) are formulas, is satisfied by a Haskell term \((h : t) \) where \(h \) satisfies \(P \) and \(t \) satisfies \(Q \)
 - **Lfp and Gfp formulas** assert universal/existental properties of (unbounded) term structures

- Congruence formulas relate properties to the shapes of terms
 - e.g. the formula \((P : Q) \), where \(P \) and \(Q \) are formulas, is satisfied by a Haskell term \((h : t) \) where \(h \) satisfies \(P \) and \(t \) satisfies \(Q \)
 - **Lfp and Gfp formulas** assert universal/existental properties of (unbounded) term structures
A Syntax of Formulas

Propositions:

\[M :: P \quad -- \text{asserts that } M \text{ satisfies } P \]
\[M \equiv N \quad -- \text{asserts (semantic) equality of } M \text{ and } N \]

Unary Predicates:

\[P ::= \text{Univ} \quad -- \text{the universal predicate} \]
\[\mid \text{Undef} \quad -- \text{the predicate satisfied only by } \bot \]
\[\mid P_1 \land P_2 \quad -- \text{a conjunctive predicate formula} \]
\[\mid P_1 \lor P_2 \quad -- \text{a disjunctive predicate formula} \]
\[\mid P_1 \rightarrow P_2 \quad -- \text{an “arrow” formula} \]
\[\mid \$P \quad -- \text{a strong predicate (requires well-definedness)} \]
\[\mid \text{Lfp } \xi \cdot P \quad -- \text{a least fixpoint (LFP) formula} \]
\[\mid \text{Gfp } \xi \cdot P \quad -- \text{a greatest fixpoint (GFP) formula} \]
\[\mid C \ P_1 \ldots P_k \quad -- \text{a term congruence formula} \]
\[\quad \bullet \text{ Where } C \text{ is a “lifted” data constructor of arity } k \]
\[\mid !(\llcorner C) \quad -- \text{“lifted” sections} \]
\[\mid \{ | \text{pattern} | \text{Prop} \} \quad -- \text{a set comprehension} \]
Expressing Properties of Terms

• How can we express the property (of a list-typed value) of finiteness?
 – In first-order logic, it’s not possible to express the condition that a list is finite, without resorting to recursion
 – In a higher-order logic, inductive formulas are available
 • Induction rules quantify over predicates, e.g.
 \[\text{Finite-list}(A) = [P] P \rightarrow (A \rightarrow P \rightarrow P) \rightarrow P \]
 This formula gives a type of finite lists, but does not directly describe their structure as Haskell terms

• A better solution
 – Introduce recursion in predicate definitions
 • mu-calculus (Kozen, 1983)
 – Lift the constructors of terms to the status of predicates (analogous to pattern constructors)
Term Congruence Formulas

• Taking advantage of the isomorphism between a free datatype and the sum-of-products of its component types
 – Haskell exploits the isomorphism in pattern-matches
 – Programatica logic exploits the isomorphism with congruence formulas

The proposition $M :::: C P_1 \ldots P_k$ is equivalent to:

$\exists N_1 \ldots N_k \cdot M = C N_1 \ldots N_k \land (N_1 :::: P_1) \land \ldots \land (N_k :::: P_k)$

• Congruence formulas are succinct, and
 – Coherent with the interpretation of P-logic (to follow)
 – The isomorphism between structure and components leads directly to inference rules for congruence formulas (to follow)
A logic for reasoning about partial, continuous functions

• Strong and weak assertions
 – A strong assertion, $M :: \ P$, is satisfied if term M has a defined value which satisfies P
 – A weak assertion, $N :: Q$, is satisfied if term N is undefined or has a defined value which satisfies Q

• Assertions about a function $f :: \tau_1 \to \tau_2$
 $f :: ¥(¥Univ \to ¥Univ)$ asserts that f is total
 $f :: \text{UnDef} \to \text{UnDef}$ asserts that f is strict
 $f :: \text{Univ} \to ¥\text{Univ}$ asserts that f is a constant fn
 (since f is presumed continuous)
Predicate Formulas

• Propositional connectives are lifted to connectives of unary predicate formulas

\[
\begin{align*}
 x : & : (P \land Q) \equiv_{\text{def}} x : : P \land x : : Q \\
 x : & : (P \lor Q) \equiv_{\text{def}} x : : P \lor x : : Q \\
 x : & : \$(P \land Q) \equiv_{\text{def}} x : : \$P \land x : : \$Q \\
 x : & : \$(P \lor Q) \equiv_{\text{def}} x : : \$P \lor x : : \$Q \\
 x : & : \neg P \equiv_{\text{def}} \neg (x : : P) \lor x : : \text{UnDef}
\end{align*}
\]
Recursively Defined Predicates

- μ-calculus extends first-order logic with least and greatest fixed-point formulas
 - Expresses properties asserted over the extent of a data structure

Examples:
- $\text{Finite-list} = \text{Lfp } \zeta \bullet [] \lor (\text{Univ} : \$\zeta)$
- $\text{Head-strict-list} = \text{Lfp } \zeta \bullet [] \lor (\$\text{Univ} : \zeta)$
- $\text{Infinite-Stream} = \text{Gfp } \zeta \bullet (\text{Univ} : \$\zeta)$
Example 1: length of lists is additive

- Functions as defined in Haskell

  ```haskell
  length :: [a] -> Integer
  length [] = 0
  length (_:t) = 1 + length t
  ```

 - the multi-equation function definition is desugared to yield a single equation:

  ```haskell
  length = \_xs -> case _xs of
         [] -> 0
         (_:t) -> 1 + length t
  ```

 - Similarly,

  ```haskell
  (++) = \_xs ys -> case _xs of
         [] -> ys
         (x:xs) -> x : (++) xs ys
  ```

 - We assert the following

    ```haskell
    assert All xs, ys :::: Finite-list :: length (xs ++ ys) $== length xs + length ys
    ```

 Proved using an inductive proof rule for list equality
Example 2: Correctness of a factorial function

- Functions as defined in Haskell
 - A generalized primitive recursion combinator:
 \[\text{genPR} :: (a \to \text{Bool}) \to (a \to a) \to c \to (a \to c \to c) \to a \to c \]
 \[\text{genPR} \ p \ b \ g \ h \ x = \begin{cases} \text{if} \ p \ x \ \text{then} \ g \ \text{else} \ h \ x \ (\text{genPR} \ p \ b \ g \ h \ (b \ x)) \end{cases} \]
 - A factorial function:
 \[\text{fact} :: \text{Integer} \to \text{Integer} \]
 \[\text{fact} = \text{genPR} \ \text{eq0} \ (\text{subtract} \ 1) \ 1 \ (*) \]
 - We assert the following
 property \(x \geq 0 \Rightarrow \text{fact} \ x = x! \)
 where \(0! = 1 \)
 \((x+1)! = (x+1) \times x! \)
 Proved using an inductive proof rule for genPR
 This rule requires that a set well-ordered by \(p \) and \(b \) be specified:
 \[\text{WO} \ p \ b = \text{Lfp} \ \eta \cdot \{ \ | x \ | \ p \ x \ \Downarrow \text{True} \lor (b \ x :::: \Downarrow \eta) \} \]
Example 3: Ordered insertion in a list

- **Functions as defined in Haskell**

  ```haskell
  insert :: Int -> [Int] -> [Int]
  insert a [] = [a]
  insert a ys @ (y : _) | a < y = a : ys
                          | a == y = ys
  insert a (y : ys) = y : insert a ys
  ```

 - the multi-equation function definition is desugared to yield a single equation:

    ```haskell
    insert a = \_ys \rightarrow case _ys of
      [] \rightarrow [a]
      (y : _) | a < y \rightarrow a : ys
               | a == y \rightarrow ys
      (y : ys) \rightarrow y : insert a ys
    ```

 - We assert the following

    ```haskell
    assert All xs • xs ::: \$Univ ⇒ insert a xs ::: !(≪a) unless !(=⇒a)
    ```

 where

    ```haskell
    P unless Q = Gfp ζ • (︦Q : Univ) ∨ (P : ︦ζ)
    ```

 and

    ```haskell
    □P = Gfp ζ • [] ∨ (P : ︦ζ)
    ```

 This property has been proved using the Gfp rule (and many others)
Semantic Interpretation
Semantic Interpretation of Formulas

• Predicate formulas are interpreted as characteristic predicates of sets (posets) in a semantics domain for Haskell
 – A formula is interpreted in a type (or type scheme)

• Notation:
 \(\lceil \tau \rceil \) is the set of domain elements of the Haskell type \(\tau \) (an ideal\(^*\))
 \(C_{[\tau]} \) is the interpretation of the constant symbol \(C \) in the type \(\tau \)
 \(\llbracket P \rrbracket^\tau \) is the ideal of domain elements \(\{ t \in \lceil \tau \rceil \mid t \text{ satisfies } P \} \), where \(P \) is an unstrengthened predicate
 \(\llbracket \$P \rrbracket^\tau \) is the set of elements \(\llbracket P \rrbracket^\tau - \{ \bot \} \)

\(^*\) (Recall that an ideal poset is downward-closed and contains limits of its finite directed subsets.)
For Example:
Distinguished Predicates

Strong modality

\[
\llbracket \text{Univ} \rrbracket^\tau = \llbracket \tau \rrbracket - \{\bot\}
\]

\[
\llbracket \text{UnDef} \rrbracket^\tau = \{\}\]

Weak modality

\[
\llbracket \text{UnDef} \rrbracket^\tau = \{\bot\}
\]
Predicates derived from Sections

• Equality comparisons with constants
 \[!!(==a) \]^{\tau} = \{ x \in \llbracket \tau \rrbracket \mid x = a_{\llbracket \tau \rrbracket} \lor x = \bot \}\]

• Ordering relations
 \[!!(<a) \]^{\tau} = \{ x \in \llbracket \tau \rrbracket \mid x <_{\llbracket \tau \rrbracket} a_{\llbracket \tau \rrbracket} \lor x = \bot \}\]
 where \(\tau \) is an instance of the Ord type class.
Term Congruence Predicates

- A datatype definition populates a signature Σ_k^τ with its data constructors of arity k (for $k \geq 0$)

$$(C, (\tau_1, \ldots, \tau_k)) \in \Sigma_k^\tau \Rightarrow$$

$$\llbracket C \ P_1 \ldots \ P_k \rrbracket^\tau =$$

$$\{C^{\!\tau} \ x_1 \ldots x_k \mid x_1 \in \llbracket P_1 \rrbracket^{\tau_1} \land \ldots \land x_k \in \llbracket P_k \rrbracket^{\tau_k}\} \cup \{\bot\}$$

Arrow Predicates

$$\llbracket P \rightarrow Q \rrbracket^{\tau_1 \rightarrow \tau_2} =$$

$$\{f \in \llbracket \tau_1 \rrbracket \rightarrow \llbracket \tau_2 \rrbracket \mid \forall x \in \llbracket P \rrbracket^{\tau_1} \bullet f \ x \in \llbracket Q \rrbracket^{\tau_2}\} \cup \{\bot\}$$
Conjunction and Disjunction

\[[P_1 \land P_2]^\tau = [P_1]^\tau_1 \cap [P_2]^\tau \]
\[[P_1 \lor P_2]^\tau = [P_1]^\tau_1 \cup [P_2]^\tau \]

The Equality Predicate

\[[(\equiv)]^\tau = \{(u, v) \mid u \in \tau \land v \in \tau \land u = v \} \]
\[[(\not\equiv)]^\tau = \{(u, v) \mid u \in \tau \land v \in \tau \land u = v \land u \neq \bot \} \]
Fixed-Point Formulas

H is a predicate formula, *admissible* for fixed-point binding of the predicate variable *ζ* if *ζ* does not occur in a negated position.

LFP:
\[
\llbracket \text{Lfp} \xi \bullet H \rrbracket^\tau = \bigcup_{j=0}^{\infty} \llbracket H^j \rrbracket^\tau
\]
where \(H^0 = \text{UnDef} \)
\[
H^{j+1} = H \ [H^j / \xi]
\]

GFP:
\[
\llbracket \text{Gfp} \xi \bullet H \rrbracket^\tau = \bigcap_{j=0}^{\infty} \llbracket H^j \rrbracket^\tau
\]
where \(H^0 = \text{Univ} \)
\[
H^{j+1} = H \ [H^j / \xi]
\]
Example 1: Tail-strict lists

- Consider LFP formula
 \[\text{Strict-list}(A) \equiv \text{Lfp } \xi \cdot [] \lor (\text{\$A : \$} \xi) \]
 where \textit{data unit} \text{\$A } = A

- The interpretation of \text{Strict-list}(A) is
 \[
 \{\bot\} \cup \{\bot, []\} \cup \{\bot, [], [A]\} \cup \{\bot, [], [A], [A, A]\} \cup ...
 \]

This is the representation of a flat subdomain (the \bot element is never embedded in a list structure)
Example 2: Non-tail-strict lists

- Consider LFP formula

\[\text{Non-strict}(A) \equiv \text{Lfp } \xi \cdot [\] \lor (A : \xi) \]

where \(\text{data unit}A = A \)

- The interpretation of \(\text{Non-strict}(A) \) is

\[
\{ \bot \} \cup \{ \bot, [\], (\bot: \bot), (A: \bot) \} \cup \{ \bot, [\], [\bot], [A], \\
(\bot: \bot), (\bot:(\bot: \bot)), (A:(\bot: \bot)), (\bot:(A: \bot)), (A:(A: \bot)) \} \cup \ldots
\]

containing many more elements than in Example 1 because \(\bot \) elements are embedded.

- \(\text{Non-tail-strict}(A) \equiv \text{Univ}^{[\text{unit}A]} \)
Inference Rules of Programmatica logic
Constructors as Predicates

• Idea: Data constructors are “lifted” to act as predicate constructors

• Example:

x::: [] is the proposition “x has the value [] or else is undefined”

 x::: (P:Q) is the proposition “∃u,v. x has value (u:v) and u::: P and v::: Q or else x is undefined”
Rules in the style of a Sequent Calculus

• Right-introduction rules
 Example: \[\Gamma \vdash h:::P \quad \Gamma \vdash t:::Q \]
 \[\Gamma \vdash (h:t):::(P:Q) \]
 – Hypotheses make assertions about subterms of the subject term that appears on the right side of the conclusion

• Left-introduction rules
 Example: \[h:::P, t:::Q \vdash \Delta \]
 \[(h:t):::(P:Q) \vdash \Delta \]
 – Hypotheses make assumptions about subterms of a subject term that appears on the left side of the conclusion

Left introduction rules in a sequent style correspond to elimination rules in a natural deduction style.
Rules for Congruence Formulas

- Constructor application, right introduction
 \[
 \Gamma, (C, (\tau_1, \ldots, \tau_k)) \in \Sigma_k \quad \vdash \quad x_1 ::::: P_1^{\tau_1} \ldots \Gamma \vdash x_k ::::: P_k^{\tau_k}
 \]

- Constructor application, left introduction
 \[
 (C, (\tau_1, \ldots, \tau_k)) \in \Sigma_k, \quad x_1 ::::: P_1^{\tau_1}, \ldots, x_k ::::: P_k^{\tau_k} \vdash \Delta
 \]
 \[
 (C, (\tau_1, \ldots, \tau_k)) \in \Sigma_k, \quad C x_1 \ldots x_k ::::: C[\tau] P_1^{\tau_1} \ldots P_k^{\tau_k} \vdash \Delta
 \]
Abs traction and Application

• Abs traction (right introduction)

\[
\frac{\Gamma, x::: P \vdash e::: Q}{\Gamma \vdash \lambda x \rightarrow e::: (P \rightarrow Q)}
\]

– The arrow (→) is a predicate constructor symbol

• Abs traction (left introduction)

\[
\frac{\Gamma \vdash e::: P \quad \Gamma, f e::: Q \vdash \Delta}{\Gamma, f::: (P \rightarrow Q) \vdash \Delta}
\]

• Application (right introduction)

\[
\frac{\Gamma \vdash f::: (P \rightarrow Q) \quad \Gamma \vdash e::: P}{\Gamma \vdash f e::: Q}
\]
Properties of Recursively-Defined Functions — LFP Formulas

• A verification rule for LFP properties of a recursive function definition, let $m = M$

\[
\Gamma, m ::::: Univ \vdash M ::::: \$(P_1 \rightarrow H) \\
\Gamma, m ::::: (P_1 \lor P_2) \rightarrow \xi \vdash M ::::: \$(P_2 \rightarrow H) \\
\Gamma, m \models M \vdash m ::::: \$(P_1 \lor P_2 \rightarrow \text{Lfp } \xi \cdot H)
\]

- P_1 and P_2 are separation predicates

which partition the argument set into subsets on which m is not recursively invoked (resp. is invoked) in M

- ξ is a predicate variable that may occur only in H
Example: \textit{fact} yields a positive result on a domain of non-negative integers

\begin{itemize}
 \item \texttt{fact} = \(\lambda n \rightarrow \begin{cases}
 1 & \text{if } n == 0 \\
 n \times \text{fact}(n-1) & \text{else}
 \end{cases} \) \hspace{1cm} (Haskell definition)

 \textbf{assert} \quad \text{fact} :::: \$(\geq 0) \rightarrow \$(\text{Lfp} \, \xi \cdot \$(==1) \lor \text{Geq} \, \xi)\\

 \textbf{property} \quad \text{Geq} \, P \equiv \{ x \mid \exists y \cdot x \geq y \land y :::: P \} \]

 \item \text{Separation predicates: } P1 \equiv \$(==0), \ P2 \equiv \$(>0), \ \text{support deductions of:} \\
 \text{fact} :: \text{Univ} \vdash (\lambda n \rightarrow \begin{cases}
 1 & \text{if } n == 0 \\
 n \times \text{fact}(n-1) & \text{else}
 \end{cases}) \\
 \vdash \$(==0) \rightarrow \$(==1) \lor \text{Geq} \, \xi \\
 \text{and (using several facts about arithmetic)} \\
 \text{fact} :::: \$(\geq 0) \rightarrow \xi \vdash (\lambda n \rightarrow \begin{cases}
 1 & \text{if } n == 0 \\
 n \times \text{fact}(n-1) & \text{else}
 \end{cases}) \\
 \vdash \$(>0) \rightarrow \$(==1) \lor \text{Geq} \, \xi \\
 \text{from which the assertion can be proved by the LFP rule}
\end{itemize}
Properties of Recursively-Defined Functions — GFP Formulas

• A verification rule for GFP properties of a recursive function definition, let $m = M$

\[
\Gamma \vdash M :::: H[Univ / \xi]
\]

\[
\Gamma, M :::: H \vdash m :::: \xi
\]

\[
\Gamma, m \equiv M \vdash m :::: Gfp\xi \bullet H
\]

where ξ is a predicate variable that may occur only in H
Patterned Abs tractions

• Explicit abs traction over argument patterns
 – Extended with guarded expressions as the bodies of abs tractions
 (This is an orthogonal extension to Haskell — not part of the language)
• Function definitions, case expressions and let clauses can be defined in terms of patterned abs tractions
• The fatbar connective combines a sequence of patterned abs tractions into a composite, function-typed expression
 – Defined by interpreting patterned abs traction in the Maybe monad
Rules for a Patterned Abstraction

• **Successful match**

\[
\Gamma, x_1:::P_1,\ldots,x_n:::P_n \mid- g:::Q \\
\Gamma, e:::\pi(P_1,\ldots,P_n) \mid- (\lambda\pi(x_1,\ldots,x_n) \rightarrow g) e:::\pi\lambda Just(Q)
\]

where \(\pi\) represents a pattern with \(n\) variables

• **Match failure**

\[
\Gamma, e:::\pi Dom(\pi) \mid- (\lambda\pi(x_1,\ldots,x_n) \rightarrow g) e:::\pi Nothing
\]

where \(Dom(\pi)\) is the predicate satisfied by terms that do not match \(\pi\)
The fatbar connective

$(\|) \::: (a \rightarrow \text{Maybe } b) \rightarrow (a \rightarrow \text{Maybe } b) \rightarrow a \rightarrow \text{Maybe } b$

• Rules

\[
\begin{align*}
\Gamma \vdash g_1 \ e:::\$Nothing & \quad \Gamma \vdash g_2 \ e:::\$Q \\
\Gamma \vdash (g_1 \parallel g_2) \ e:::\$Q \\
\Gamma \vdash g_1 \ e:::\$Just(P) & \quad \Gamma \vdash (g_1 \parallel g_2) \ e:::\$Just(P)
\end{align*}
\]
Guarded Expressions

- Rules for expressions with guards
 - Maybe is a monadic type constructor

\[
\Gamma |- e :: P \quad \Gamma |- g :: $!(== True) \\
\Gamma |- g \rightarrow e :: $Just(P)
\]

where \(P :: Prop \)

\[
\Gamma |- g :: $!(== False) \\
\Gamma |- g \rightarrow e :: $Nothing
\]
Confirming property assertions in the Maybe monad

- Properties asserted in the Maybe monad are collected over branches of a case expression.
- But at the end of a list of case branches,
 - A strongly *Just*-prefixed property is equivalent to an ordinary predicate.

\[
\Gamma |- e :::: $Just(P) \\
\Gamma |- e :::: P
\]
Class Instances and Overloading

- Two kinds of overloading
 - Derived instances of an operator are language- (or implementation)-defined
 - Derived instances are generic functions
 - Derived instances satisfy a common law
 - Programmer-defined instances are particular
 - Instances have independent properties

- Overloading is resolved (logically) by typing
 - Use type-indexed predicates to specify properties
 - Give the meaning of an assertion at each instance of its index type
Type-Indexed Predicates

• Each predicate is annotated with a type formula
 – Indicates the type at which the predicate is interpreted
 – The predicate index on a formula must be compatible with the type of the expressions to which it applies
 • If e has type \(\tau \) then \(e ::: P^\tau \) has meaning

• Predicates in rules for generic operators may be indexed with a (qualified) type variable
 – For example, \(!(==0)^{\text{Num}} a => a \)

• Rules for specific operators may contain predicate expressions indexed by concrete types
Soundness of the Programatica logic

A sequent, $\Gamma \vdash e :::: P^\tau$, is valid if

For every semantic valuation (of term variables) such that all propositions of the context, Γ, are true, the conclusion $e :::: P^\tau$ is true (if e has type τ).

A criterion for soundness of an inference rule,

$\Gamma \vdash \text{Prop}_1 \ldots \Gamma \vdash \text{Prop}_n$

$\Gamma \vdash \text{Prop}$

For every context, Γ, such that the antecedents of the rule are valid sequents, the consequent is also valid.

P-logic is sound iff all of its inference rules are sound with respect to a semantics for Haskell.

Soundness proof is presented in a separate talk.
Tool Support for P-logic

• PFE, the Programatica Front-End tool
 – Parses and type-checks property assertions and declarations embedded in a Haskell program text
 – Interfaces with the PFE browser, which displays a text with embedded assertions
 • supports Haskell module structure
 • provides links to declarations of identifiers
 – Supports certificate management for asserted properties
 • automatically calculates and updates dependencies

• PFE is described in another talk (by Thomas Hallgren)
Conclusions

• \(P \)-logic meets its design objectives
 – Expresses properties of Haskell terms
 • Without translation or artificial coding
 • With modalities for both strict and non-strict functions and
 data constructors

• Its semantics is given in terms of a domain-theoretic model for Haskell
 – Semantics furnishes a reference for soundness of
 proof rules

• To be done:
 – Develop a verification server for \(P \)-logic assertions